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Abstract

We study the costs of and the housing market response to subsidence, the sinking
of land areas due to groundwater over-extraction, in Mexico City. We propose an
equilibrium model of the housing market that features housing re-development in
the face of an evolving environmental hazard that has both realized and expected
future impacts to home quality. Guided by model-derived estimating equations for
key parameters of the model, we exploit quasi-random variation in sinking intensity
to estimate the impact of both realized and future subsidence on home values and
redevelopment. We find that realized subsidence imposes substantial costs, lowering
prices by 1.5% on average. However, prices are unresponsive to measures of expected
future sinking, and novel survey evidence on residents’ beliefs and information about
sinking suggest that information frictions affect the ability of homebuyers to capitalize
predictable future risk. Consistent with model predictions, units that have experienced
more sinking are more likely to be redeveloped, as these have lower opportunity
cost of being re-built. Evaluating welfare using our parameter estimates implies that
subsidence costs Mexico City a total of $33 billion USD, about $18 billion of which
are due to information frictions that inefficiently increase the housing stock in risky
areas. Our findings show that groundwater depletion imposes a costly externality on
the built environment, and that information frictions affecting the capitalization of
environmental hazards in the housing market exacerbate these costs by putting more
value in harm’s way.
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1 Introduction

As groundwater levels decline in places of high population density worldwide, policymakers

are increasingly concerned about the environmental and economic consequences of falling

water tables (Carleton et al., 2024; Rodella et al., 2023). One important yet under-studied

externality resulting from groundwater decline is land subsidence, the sinking of the Earth’s

surface due to groundwater depletion. Land subsidence occurs when aquifer levels fall within

a groundwater basin, leading to the irreversible compaction of fine-grained sediments and

the loss of elevation for the overlying land along with any infrastructure located in the area.1

Subsidence is an externality because aquifers are hydraulically connected: a drop in water

levels caused by pumping in one location eventually equalizes over space, causing land to

sink in potentially distant areas within the same basin.

While the physical sinking process is slow— with rates in “severe” cases ranging from

10 to 30 centimeters per year of elevation loss— the cumulative impact creates significant

hazards for the built environment. Over time, structures endure increasing stress that leads

to tilting, cracking, and eventual loss of structural integrity as the foundation shifts below

them. Large public infrastructure is also vulnerable to uneven sinking across broad areas,

which causes fissures and sinkholes in roads and damages subterranean assets like water

mains and subway tunnels by distorting their required slopes (Cigna and Tapete, 2021;

Gambolati and Teatini, 2021).

These structural and infrastructural issues are particularly acute in large cities overlying

severely over-drafted groundwater sources, with prominent examples including Jakarta,

Tehran, and Mexico City.2 These major world cities have experienced cumulative losses

of several meters in recent decades (Bagheri-Gavkosh et al., 2021; Werner et al., 2013),

1Subsidence can also be induced by intensive mining activities or volcanic eruptions; in this paper we
focus on groundwater depletion as this is the predominant cause in cities.

2Subsidence “hot spots” can be found on every continent, and there are particularly fast-sinking areas
in coastal East Asia, Iran, Mexico, and the United States with areas of intense sinking in 45 states in the
United States and more than 95 cities in China (Bagheri-Gavkosh et al., 2021). As Figure B1 illustrates,
this issue tends to be particularly acute in developing countries with water management challenges.
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resulting in severe consequences for the physical capital overlying sinking areas.3

We study the costs of subsidence and the equilibrium housing market response to this

evolving hazard in one of the largest and fastest-sinking urban areas in the world: Mexico

City. Mexico City has experienced rapid sinking with the worst-hit parts of the city losing

approximately a meter of elevation every 3-4 years since 1950 (Chaussard et al., 2021).

Figure 1 depicts some examples of what the consequences of subsidence look like in the

city: sinking buildings become damaged and potentially uninhabitable, or require extensive

repairs to remain usable. Additionally, subsidence has caused damage to pavement and other

infrastructure laid on or below the surface, especially in areas sinking unevenly.

We structure our approach to estimating the costs of subsidence by proposing an

equilibrium model of the housing market from which we derive model-consistent estimating

equations that identify and provide interpretation of the key parameters governing the

market response to subsidence. On the demand side, our estimating equation identifies the

willingness to pay to avoid sinking when (i) forward-looking housing demand must consider

the future risk of sinking even for homes that have not yet sunk, and (ii) there may be

information frictions affecting valuation of future risk, as this may be difficult for home

buyers to internalize for yet-unaffected homes. On the supply side, we model a housing

developer who considers whether and where to re-develop housing units by re-building

existing units on a plot, taking into account that redevelopment re-vitalizes homes that

have been impacted by subsidence.

The supply framework highlights the dual role that evolving hazards that affect housing

play in the incentive to redevelop; while worsening expectations about future impacts

dissuade development, the depreciation caused by subsidence lowers the opportunity cost of

renewing existing units, leading to increases in development in affected areas. Conditional on

3In subsiding coastal areas, it is estimated that up to 30% of projected sea level rise is in fact due to
these areas sinking into the sea (Nicholls et al., 2021), and currently 11 coastal cities are at risk of becoming
totally inundated by the end of the century. In a striking example, Indonesia has developed a plan to move
the capital away from Jakarta, which is rapidly subsiding below sea level due to groundwater extraction
(Press, 2022).
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development, information frictions about future damages lead to inefficiently high housing

supply in hazardous areas, as developers receive too high a price for units that will sink in

the future. These forces are general to settings where environmental hazards like floods or

erosion lead to accelerated housing stock deterioration, and our model provides a way to

think about what types of housing market responses are symptomatic of market failures

that affect the capitalization of environmental hazards into home values.

The model also elucidates that three parameters are central to this relationship: the

willingness to pay of residents to avoid subsidence, the extent of information frictions, and

the housing supply elasticity. We derive estimating equations from the structure for these

parameters and estimate them using a quasi-experimental design that combines original

survey evidence on resident beliefs and information about subsidence, administrative data

on bank appraisals, and data on housing developers in Mexico City with novel subsidence

measures that we construct for Mexico City.

We measure subsidence by combining original processing of radio wave-based satellite

products together with pre-existing measures created by geophysicists to create the longest

panel ever constructed of annual subsidence rates in Mexico City at 100m resolution from

2007-2025. We do so using a process called Synthetic Aperture Radar interferometry, a

tool used by geophysicists to measure distortions in the earth with applications related to

subsidence, volcanic eruptions, and glacier movement, among others. We then use these

data to infer the subsidence history of individual properties in our appraisal and survey

data, measuring how much a specific property has sunk over its life and its sinking post-

transaction.

With these measures in hand we take our model to the data, estimating the willingness

to pay of home buyers to avoid subsidence and the capitalization of future subsidence into

home values using the universe of mortgage appraisals in Mexico City. In order to causally

identify this parameter, we exploit the geophysical determinants of sinking in Mexico City

over time and space to isolate exogenous variation in sinking, and use a rigorous repeat
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appraisal design that allows us to flexibly control for all static quality and neighborhood

differences between different buildings. By using repeat bank appraisals conducted for the

purpose of home sales, we employ gold standard approaches to measuring housing price

changes, an opportunity that is rarely available in middle income or developing countries

due to data limitations. We find that subsidence has important impacts on home values: a

meter of sinking causes a loss of 6% in appraised value, and the average home in our sample

lost 1.5% of its value to sinking over 10 years. Exploring mechanisms of how sinking impacts

home values, we find evidence that losses are are a product of both physical impacts to the

home and increased maintenance costs. Including uneven neighborhood sinking explicitly

in estimation shows that a neighborhood’s relative sinking compare to its neighbors also

matters: The average relative change in the altitude of a neighborhood causes a 2.4% loss in

appraised value over 10 years, and is correlated with an almost doubling of the probability

of residents reporting issues with flooding in their neighborhood.

We estimate the extent of information frictions using a combination of model-informed

tests and survey evidence. Evidence from the model-derived specification shows that home

prices have no detectable relationship with multiple ways of specifying expectations about the

future intensity of sinking. We complement this approach using a novel survey of homeowners

and long-term occupiers of their housing unit in Mexico City that documents residents’ beliefs

about subsidence, how they infer sinking risk, and the direct impacts of subsidence to their

home and neighborhood. We find evidence that residents of high-sinking plots experience

high rates of surprise about the severity of sinking they have experienced, and that these same

residents are the least likely report having considered sinking when they moved in, a finding

robust to rich controls for respondent socioeconomic status and survey measures of risk and

discounting preferences. Together, these facts point to the presence of important frictions

in residents’ ability to price future sinking into home prices, and guide us in calibrating the

structural information friction parameter in our model.

On the supply side, we leverage the developer’s decision to purchase and rebuild on a
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plot to estimate the supply elasticity using a survey of housing developers. We infer that a

property was re-developed by matching appraisals to the locations of new builds, and find

that a meter of sinking increases the probability that a plot is redeveloped by 9.1 percentage

points. This finding echos our model intuition that realized sinking lowers the opportunity

cost of re-developing a plot, and interpreting our estimates structurally provides an estimate

of the supply elasticity.

Using our parameter estimates to evaluate welfare, we find that subsidence costs Mexico

City a total of $33 billion US dollars, which annualized represents almost 1% of Mexico

City’s GDP. Converting this total to dollars-per-unit of groundwater pumped allows us to

estimate the Pigouvian tax on groundwater pumping, which we estimate to be $0.89 per cubic

meter. This is a large tax, which if passed on to consumers would imply a 137% increase in

the average water bill. We also estimate the potential gains from policies that address the

information friction in the housing market. As is the case in many developing and middle

income countries, there are no disclosure laws in Mexico requiring the reporting of relevant

hazards as in the United States, despite the fact that developers have detailed information

about subsidence risk at the plot level. We find that fully mitigating information frictions

would offset 55% of the total costs of subsidence. While all market participants benefit

from slowing subsidence, the developer loses market surplus when information frictions are

addressed, as information frictions cause the price they receive for new units to be inefficiently

high.

Finally, we use our estimates to conduct cost-benefit analysis of policies that would permit

groundwater recharge, as the costs of subsidence represent the benefits of these investments.

We focus on four policies that have already been implemented by the city government to

some extent: injecting wastewater into the aquifer, repairing the extensive leaks that cause

technical losses in the domestic water supply system, investing in new water sources to supply

the city, and recycling wastewater. We find that repairing leaks and artificial recharge show

the most promise in terms of a cost-effective policy, but caution that our analysis is limited
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by the use of rough or dated cost estimates.

These findings represent the first comprehensive economic analysis of subsidence. While

a large body of work has focused on the costs of environmental externalities such as air

pollution, floods, and wildfires, subsidence is a natural hazard that has been relatively

understudied by economists despite the fact that it is an important groundwater externality

affecting many major cities around the world.4 We contribute to the sparse economics

literature that has studied subsidence (Willemsen et al., 2020; Yoo and Perrings, 2017)

by combining improved causal inference with market valuation to estimate costs, and by

providing empirical and theoretical analysis of the equilibrium housing market response to

sinking. Our original satellite work and survey contribute novel evidence on the physical

impacts of sinking on buildings and public infrastructure, which to our knowledge is the first

representative measure of damages for a city.

More broadly, our framework provides a way to think about the equilibrium response

of housing to evolving environmental hazards, with a particular focus on contexts with

imperfect information. We build on recent empirical findings from work in environmental,

urban, and real estate economics that study how information frictions about environmental

risk impact housing markets (Bakkensen and Barrage, 2022; Bakkensen et al., 2019;

Gallagher, 2014; Gourevitch et al., 2023; Hino and Burke, 2021; Ortega et al., 2025; Ortega

and Tas.pınar, 2018; Petkov and Ortega, 2025; Wagner, 2022), and go further by embedding

these frictions in an equilibrium spatial model of the housing market to quantify the

aggregate costs of these frictions.5 Our results highlight that the welfare implications

of these disasters hinge critically on our ability to observe, understand and respond to

environmental threats, responses that are complicated for disasters without extreme and

4Engineering-style estimates of the costs of subsidence suggest that these may be large, especially in urban
areas; case studies from China (Lixin et al., 2010), Indonesia (Mahya et al., 2021), Mexico (Fernández-Torres
et al., 2025; Novelo-Casanova et al., 2022), and California (Borchers and Carpenter, 2014; Fowler, 1981) find
damages in the billions for specific cities or counties. However, the general approach in these studies is to
estimate replacement costs for damaged infrastructure without considering market values or forces.

5Relatedly, our forward-looking demand framework draws on insights from recent dynamic hedonic
approaches (Rosen, 1974; Benetton et al., 2023; Bishop and Murphy, 2019), and we propose a way of
incorporating information frictions into these methods.
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salient impacts that correct inattention in the market. We also provide rich empirical

evidence on the housing market response to an important externality and the value of

disclosure from a middle income context, a rare opportunity due to the infrequency of

housing value data in these settings.6.

By modeling the market response to environmental risk in equilibrium, this paper is

related to the literature on urban development and adaptation (Gechter and Tsivanidis,

2025; Hsiao, 2023; Ospital, 2024; Ostriker and Russo, 2023), and more generally to a body of

work that studies the costs of slow-moving disasters such as climate change (Balboni, 2025;

Desmet et al., 2021; Hsiang et al., 2017). Our model contributes to these papers by modeling

redevelopment in the context of an evolving hazard, which allows us to carefully examine

the different roles that realizations and expectations of environmental risks play in driving

housing supply and re-development.

The rest of this paper is organized as follows. Section 2 introduces the context and our

satellite data for measuring subsidence. Section 3 presents the economic data we use. We

present our theoretical framework in Section 4. Section 5 presents the estimation strategy

and results from our survey work and the demand and supply estimation. We present policy

analysis in Section 6, and Section 7 concludes.

2 Subsidence in Mexico City

Mexico City has experienced severe rates of subsidence over the last 100 years, which

geophysicists have established is caused by sustained groundwater pumping on the Mexico

Valley aquifer (Cabral-Cano et al., 2008; Chaussard et al., 2021; Solano-Rojas et al., 2015).7

This pumping is primarily conducted by the city government and the federal water authority

6One important exception is Gonzalez-Navarro and Quintana-Domeque (2016), who also use professional
appraiser data to study road paving in Mexico. Related papers on the value of disclosure from the United
States include Dranove and Jin (2010); Frondel et al. (2020); Nanda and Ross (2012); Sinha (2022)

7Mexico City has a long history of water management and scarcity; the Aztec empire had built their
capital city around and interwoven with the large lake system in the area, but the lake was subsequently
drained by the Spanish colonial government. Because such a large part of the city is built on the soft, silty
lake bed of the drained lake, this area is particularly prone to subsidence.
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CONAGUA for the purpose of supplying the city with about two-thirds of its total water

consumption, the other third of which is supplied by surface water sources.8 Because the

aquifer is hydraulically connected, pumping anywhere affects the water table everywhere

(Cigna and Tapete, 2021), which is why the city itself experiences high rates of subsidence

despite the fact that there is no groundwater pumping conducted within city limits.9

Thus sinking rates are primarily a product of two factors: the height of the water table

and the propensity of overlying geologies to compact and sink. Given that the water table

is currently far below historic levels, sinking accelerates when the water table is relatively

lower (and vice versa), and could only be fully stopped if the aquifer is recharged either

naturally or via water injection (Gambolati and Teatini, 2021; Liu et al., 2019). While it is

conceivable that the weight of human development could increase sinking, empirical studies

in Mexico City have found no correlation between localized sinking rates and population

density, pumping rates, or land use type (Chaussard et al., 2021).10 Our own analysis in

Appendix E.1 supports this conclusion, as we find that construction on a pixel does not

predict subsequent sinking rates.

2.1 Measuring subsidence

Historically, subsidence was measured by inserting poles deep into the ground at discrete

points and measuring the change in how exposed the pole became over time as the ground

subsided away from it; this method was used as early as the 19th century by the Spanish

8Bringing surface water into Mexico City is very expensive due to how far large surface water sources
are and the fact that most sources need to be pumped over the surrounding mountain ranges. The most
important surface water source for the city is the Cutzamala system, which involves seven dams and over
330 kilometers of canals and pipes that use over 2 billion kWh of electricity per year to transport water to
Mexico City.

9The government has limited all pumping on the aquifer to the periphery of the city- a policy decision
made after an episode of intense sinking in the 1950s (SACMEX, 2012), which resulted from the fact that
water table levels take time to equalize over space. Pumped water is first sent to treatment facilities then to
distribution stations, making the relationship where water is pumped and supply of water to a specific area
tenuous.

10Studies have found that the weight of New York City has caused sinking of a couple millimeters, but New
York has much higher population density than Mexico City, and this effect is orders of magnitude smaller
than the rates observed in Mexico (Parsons et al., 2023).
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colonial government to measure sinking in Mexico City (CONAGUA, 2009). Today,

measuring sinking over larger areas at fine geographic scale is possible thanks to the

inclusion of Synthetic Aperture Radar (SAR) instruments on satellites.

SAR instruments emit energy at the Earth in the form of radio waves and record a

transformation of the number of oscillations that the wave undergoes between the earth

and the satellite. While these measurements are meaningless on their own, constructing the

difference between two images through a process called interferometry creates high-accuracy

measures of vertical displacement.11 Interferometry is the go-to tool of geophysicists studying

events involving land deformation, and because this is a popular and well-established tool the

measurement error associated with SAR measurements of subsidence is well-studied, with

inaccuracies on the scale of 1-10 millimeters for modern satellites (Wu and Madson, 2024),

an order of magnitude smaller than the subsidence rates we measure in Mexico City.12

We apply gold standard tools for conducting interferometry and subsidence time series

construction that correct for distortions caused by terrain, tropospheric factors, and orbital

error to construct an 18-year panel of subsidence rates at the 100-meter pixel level for Mexico

City (Fattahi et al., 2017; Yunjun et al., 2019; Yu et al., 2018b). We do this by combining

three series of data, summarized in Appendix Figure B2, performing original interferometry

using data produced by the ALOS-1 (2007-2011) and Sentinel-1 (2021-2024) satellites to

complement measures created by geophysicists using Sentinel-1 readings from 2014-2020

(Chaussard et al., 2021).13 By using three separate series, we are able to address the

11These calculations are deterministic in nature, and are not the result of machine learning algorithms like
those well known in applications such as remote sensing of pollution or applications that use image-based
sensors.

12Interferometry achieves higher accuracy in urban areas because the hard reflective surfaces minimize
noise generated by signals intercepting vegetation. We provide a detailed discussion of the sources and
potential magnitudes of measurement error when conducting interferometry in Appendix E.1.1, but by using
state-of-the-art algorithms we address the main sources of error that could affect our estimates, including
distortions potentially generated by construction. Intuitively, construction does not have a strong impact on
our measurements for two reasons. One, because satellites take measurements at an angle, interferometry
has trouble detecting building height in general. Second, because the construction of the time series involves
linearly projecting through high-frequency measurements every 6 days by year on a pixel-by-pixel basis, this
minimizes the noise from irregular measurements or changes induced by demolition/construction.

13Because no SAR measurements were taken for Mexico from 2012-2013, we linearly interpolate data to
fill this gap. Finally, we again perform interferometry to create a panel from 2020-2025 using Sentinel-1.
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computational challenge presented by calculating a single time series: The raw Single-Look

Complex (SLC) SAR data and its processed output for just one orbit direction (ascending)

for 5 years contains almost five terabytes of data and takes over three weeks of continuous

computational time to process.

In order to characterize the gradient of sinking over larger spatial areas, the principal

risk factor for damage to roads and water mains, we define a 500-meter resolution grid (the

median census tract size) over Mexico City and construct two complementary measures of

how uneven sinking is over space. The first measure is the standard deviation of sinking

among pixels overlaying the grid cell, an intuitive measure of unevenness. The second

measure takes inspiration from the horizontal gradient used in geophysics studies such as

Fernández-Torres et al. (2020) and calculates the absolute value of the grid cell’s relative

displacement between periods t and t′ as the absolute value of the difference in grid cell

sinking and the average of its neighbors:

Abs. relative elevation changegtt′ =
t′∑

τ=t

|sgτ − snbrsgτ | (1)

The absolute value allows us to capture the potentially damaging macro-infrastructure

effects of areas that are sinking more or less than their neighbors. Because this measure

accumulates over time, it captures the cumulative impact of relative altitude change in the

environment, which may matter more for infrastructure like water mains and sewers than

unevenness alone.

2.2 Sinking over time and space

Our subsidence data paint a detailed picture of how sinking has evolved in Mexico City in

recent decades. Figure 2, Panel (a) plots sinking rates across Mexico City in 2010. The

highest rates of subsidence across the city are around 20-25 centimeters per year, rates

that are among the highest in the world (Werner et al., 2013). These fast rates are strongly
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localized in the eastern part of the city, which overlies particularly vulnerable geologies prone

to subsidence.14

Panel (b) depicts the change in the rate from 2010 to 2020, and shows that by 2020 the

northeast corner of the city actually slows somewhat whereas part of the Western edge of

the valley begin to sink. This onset of sinking is due to some destabilizing drought periods

and seismic events have weakened these historically resistant areas. Despite these changes,

subsidence on a broad scale is still very predictable over space due to the concentrated

geological features that determine risk.15 Perhaps because of this broad systematic

predictability, subsidence is uninsurable in Mexico City, and is explicitly listed in home

insurance policies as a non-covered event.16 Finally, Panels (c) and (d) plot our measures of

uneven sinking, showing that high relative altitude change and standard deviation of sinking

are concentrated around the edges of the high-sinking area, as well as around relatively

fixed geologic features that maintain their altitude as the neighborhoods around them sink.

2.3 Sinking is prominent, but poorly understood by residents

Subsidence is a familiar issue to Mexico City residents: In our survey, before we mention the

word subsidence, 56% of respondents included “sinking” in their response when asked about

the likely causes of the degraded state of a photograph of a tilted and cracked building.

Additionally, only 18.5% of respondents could not provide a guess when asked where in the

city has the most issues with subsidence.

Despite this familiarity with subsidence as a local issue, survey respondents show several

“symptoms” of experiencing information frictions around how future subsidence will impact

their home. Figure 3 plots the relationship between a measure of expected 5-year sinking on

14Geophysicists estimate that this part of the city could sink up to 30 more meters given the thickness of
the features of the subterranean geology prone to compaction (Chaussard et al., 2021).

15Appendix F provides detailed discussion of the data generating process of subsidence and its
predictability, and we show that while sinking is very predictable over large spatial areas, sinking rates
are more idiosyncratic within a city-block.

16Subsidence was recently included in “home quality insurance” policies that cover INFONAVIT mortgages
from the federal government, but these policies only cover the first 10 years of the home’s life, within which
the most severe impacts of sinking would not yet be observed.
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a respondent’s plot, estimated as five times the average rate over the panel, and two survey

measures of information frictions. In Panel (a), this sinking intensity is plotted against the

probability that the respondent reports having considered sinking when they moved to their

unit. We see that for most of the support, residents living in units sinking at higher intensity

are less likely to have considered sinking when they moved in than residents of low-sinking

intensity plots. Complementing this in Panel (b), we find that the more a resident’s plot

has sunk, the more likely they are to report that sinking on their property has been worse

than expected, providing evidence that residents do not buy sinking homes “eyes wide open”

about the future impacts they will experience.

Not only are residents inattentive to sinking ex-ante and surprised by its impacts,

but they underestimate how much sinking they have experienced ex-post. Figure 4 plots

respondents’ belief about how much their property has sunk over the last five years to our

satellite measure, and find that the slope of this relationship is only 0.05, showing that

even in retrospect respondents have little idea about how much their property has sunk in

quantitative measures.

These findings are consistent with the idea that some residents experience information

frictions or are inattentive to future sinking, and that these residents end up sorting into

high-sinking areas. Alteratively, some residents may have high discount rates that lead them

to systematically ignore future sinking. This mechanism is unlikely for housing which has an

important asset value, and which should tie discounting of future values to other financial

products. We show in Appendix Table A4 that measured values of discount rates and risk

aversion are uncorrelated with sinking intensity, suggesting that this is not playing a strong

role here.17

We will provide more quantitative and qualitative evidence for information frictions in

Section 5, but motivated by these stylized findings we incorporate potential underestimation

17It is also possible that some residents simply do not value the impacts of subsidence on their home,
causing them to be inattentive to future sinking. However, if this were the case we would not expect these
residents to also report that subsidence has been worse than expected, as they should also be inattentive to
realized subsidence.
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of the severity of future sinking into our theoretical framework.

3 Economic Data

3.1 Measuring home prices: Appraisals

We measure housing values using confidential data on the universe of mortgage appraisals

for the purpose of home sales performed by the Federal Mortgage Society (SHF, Sociedad

Hipotecaria Federal) in Mexico City from 2005-2020, which were made available through

freedom of information request.18 We use property characteristics and exact locations to

identify identical units from the same building, a matching process that results in 17.4% of

our sample as being identified as a repeat appraisal.19 We assign sinking to transactions by

matching appraisals spatially to pixels using the exact location to calculate the total amount

of subsidence that the unit has experienced since the year of construction.

An advantage of our data is that mortgages represent relatively arms-length transactions,

which are less likely to be affected by relational contracting or fraudulent reporting for

the purpose of tax evasion, two common issues affecting price data from other sources in

Mexico (Gonzalez-Navarro and Quintana-Domeque, 2016). However, in order for appraisals

to capture the true valuation of subsidence by homebuyers as opposed to the appraiser’s

algorithm, they must contain a strong signal of the transaction price ultimately paid.

Conceptually, this is likely as appraisals are used for the purpose of valuing a mortgage, and

18An SHF appraisal is required as a condition of obtaining a mortgage from a private bank or the public
mortgage financier, and all SHF appraisals must be done by an SHF-certified appraiser. Thus, these data
contain the universe of SHF appraisals, but do not include unofficial appraisals that may have been done for
cash purchases of homes. The 2020 National Housing Survey suggests this restriction is important: only 30%
of home purchase in Mexico City in 2020 were financed with some form of formal credit, with the majority
of homes obtained via self-financing of own construction.

19We exactly match appraisals on the built square footage, the square footage of the property, the number
of rooms and bathrooms, number of floors, number of parking spaces, and whether the building has an
elevator, and require the coordinates of the appraisal to imply a less than 100-meter distance between them.
Table A2 in the Appendix describes how repeat sales properties differ from single sales in the data; properties
with repeat sales are much more likely to be apartment as opposed to single family homes, and are generally
newer, smaller, and less valuable than the full sample.
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appraisers have a strong incentive to appraise the home at the price a buyer is willing to

pay. We validate this using a confidential dataset of appraisal and transaction prices called

the R04, whose access was provided by the Banco de México. The R04 data only contain

approximate locations, but allow us to directly compare appraisals and transaction prices.

Using these data, we find that 73% of observations have identical appraisal and

transaction values, and that appraisal values closely track transaction prices. Figure 6 plots

transaction prices against appraisals, showing that points are closely centered around the 45◦

line.20 Appendix Table A1 reports coefficients and goodness-of-fit statistics for regressions

of transaction prices on appraised values with and without an intercept. We estimate

a coefficient of determination of 0.97 (Column (1)), highlighting the close relationship

between appraisals and transaction prices. Importantly, Column (3) shows that deviations

of appraisal values from sales prices are not correlated with subsidence; total sinking on

the locality from 2007-2020 is not a statistically or economically significant predictor of the

absolute deviation of appraised values from transaction prices.

3.2 New survey on subsidence impacts and beliefs

In March 2025 we conducted a representative in-home survey of long-term Mexico City

residents about subsidence impacts and their beliefs and information about subsidence.

Respondents were restricted to owner-occupiers (73%) or those who had lived in their home

for at least five years (27%). The survey was stratified based on subsidence risk, with

two-thirds of the sample drawn from the seven high-risk boroughs and one-third from the

remaining nine boroughs.21

This first-of-its-kind survey asked homeowners about the damages from subsidence to

their housing unit and the urban environment, as well as residents’ beliefs and attention

to the issue when making housing decisions. First, we surveyed residents on the physical

20Figure B3 in the appendix reports the distribution of deviations between appraised and transaction
values, showing the full distribution of differences.

21More details about survey sample definition and implementation can be found in the Data Appendix
E.2.
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quality of their home and neighborhood as well as maintenance expenditures and activities

before mentioning subsidence. In the second module, we then mentioned subsidence by name,

surveying residents on their knowledge about subsidence, how they thought about subsidence

before living in their current home, and their experience with sinking since arriving at their

current unit. We use the location of respondents’ homes to map their property to our satellite

measures of sinking and infer the total amount of sinking their home has experienced since

construction (or 2007, whichever is later), the amount of sinking on their property over the

last 5 years, and the unevenness measures associated with their grid cell.

3.3 Housing development

We examine the supply side of the market using the DIME (Dinámica del Mercado

Inmobiliario) dataset, which is a quarterly survey of new housing developers. These data

are compiled by a private real estate consulting firm and access was granted through Banco

de México. From this survey we construct a dataset of new housing developments from

2007-2020, which are new construction projects that comprise one or more housing units.22

We use these data in two ways. First, we use a combination of address matching and

spatial methods to match new developments to appraisals previous to when construction

started to identify appraisals that were sold to developers. Because addresses are not always

consistently recorded in the data and may change when a plot is redeveloped, we likely

miss some appraisals that subsequently became redeveloped in our data. We address this in

an alternative analysis that characterizes the geography of new development by creating a

panel at the pixel level that measures the number of units built and the probability of new

development.

22Given that new homes comprise 70-80% of the housing market in Mexico and that real estate developers
built 60% of new homes, the DIME data observes 42-48% of the housing market in a given quarter
(Rodŕıguez Zamora, 2010). This is likely a lower bound for Mexico City, which has a more formal construction
sector than other areas of the country. Appendix E.4 discusses coverage in more detail. There were 20,380
new developments over the study period, which contain 977,221 new housing units. The median housing
development included 20 new units, but some developments have hundreds of new units.
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4 Theoretical framework

In order to structure estimation of a hazard that has both realized and anticipated impacts,

we propose a model of the housing market that incorporates forward-looking housing demand

that values subsidence as a negative home attribute. Our model yields welfare expressions

that allow us to quantify the costs of subsidence and estimating equations for the key

parameters needed to conduct welfare analysis.

Time is discrete, and in each period households rent housing from property managers

who serve as intermediaries between renters and a housing developer who builds the housing

stock. The developer purchases existing housing from property managers and builds new

housing that is subsequently sold back to property management firms. Each period begins

with an existing continuous measure of housing on each plot j, Hjt−1, which is owned by

property management firms. There is an initial period t = 0 with a measure Hj0 of housing

on each plot. In each period t, the following sequence occurs:

1. The developer draws cost shocks for each plot and all housing units go up for sale on the

market to own housing.23 Units may be purchased by another property management

firm or the developer. If they are purchased by the developer, then new units are built,

which have zero realized sinking and re-enter the market for purchase by property

managers.24 The ownership market clears on the price of owning a home pjt, and each

plot has a housing stock Hjt that is fixed until the next period.

2. Renters draw iid preference shocks over plots and make a discrete choice over which plot

to live on. Property management firms supply rentals from the housing they purchased

in the previous step. Equilibrium rents Rjt adjust to clear the rental market.

We describe these steps in reverse order, as the decision of property management firms

to purchase is a function of their expectations over the rental market.

23By putting the full stock on the market in each period, we abstract from housing inventory and matching
buyers to available housing.

24We assume the market lasts long enough for these units to compete with a meaningful share of the stock
when put back on the market.
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4.1 Renters

A continuum of renters in Mexico indexed by i with mass L decide which discrete plot j

to rent a unit of housing on. They draw preference shocks over plots in each period, and

can choose from plots in Mexico City or choose the outside option of living outside the city

(j = 0), where rental units are supplied perfectly elastically at zero price. All rental units on

a given plot are identical, and they derive utility/disutility from paying rent Rjt, how much

the unit has sunk to date, Sjt, other observable attributes Zjt and unobserved attributes

ejt, each of which are unaffected by subsidence. Total subsidence Sjt is the accumulation of

sinking rates on the plot sjτ from the time of construction to t:

Sjt =
t∑

τ=Year builtj

sjτ (2)

Their utility is given by:

V i
jt = − log(Rjt) + γSjt + Zjtδ + ejt + ϵijt (3)

We assume ϵijt ∼ iid EV(1) with variance 1, and normalize mean utility from the outside

option to zero: V i
0t = ϵijt.

The probability that a renter chooses plot j is:

λjt =
exp(− log(Rjt) + γSjt + Zjtδ + ejt)

1 +
∑

l exp(− log(Rlt) + γSlt + Zltδ + elt)
(4)

and total rental demand is given by:

HD
jt = Lλjt(Rjt) ∀ j (5)
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4.2 Property management firms

In each period a mass of competitive property management firms, indexed by k ∈ Ω, purchase

housing (either used or newly developed) and rent units to renters. Their expected profits

on a plot j from holding a measure of housing Hjt(k) are given by:

Ẽt(πjt(k)) = Hjt(k)Ẽt

(
∞∑
τ=t

ρτ−tRjτ

)
− pjtHjt(k) (6)

Expected revenue is the present value of expected rents accruing from renting Hjt(k) of

the housing measure. These firms form subjective expectations Ẽt(), which may differ from

rational expectations Et(). Each unit of Hjt(k) costs pjt in a lump-sum payment to purchase

from another property manager or the developer.25 Their total expected profits sum over

their holdings on all plots:

Ẽt(πt(k)) =
∑
j

Ẽt(πjt(k))

The separation of the owners of housing from those who occupy it creates a helpful

accounting separation between the agent who holds the asset value of the home and the

agent with preferences over attributes, but this nests the more common case in the data

of owner-occupiers (65% of residents in Mexico City), which would correspond to property

management firms that rent to themselves.

4.2.1 Information frictions

Expectations over future sinking play an important role in (6); however, information

frictions may complicate the valuation of yet-unrealized damages, especially in the case

of atomistic home buyers who cannot hedge over a sophisticated real estate portfolio

(Bakkensen and Barrage, 2022; Gourevitch et al., 2023; Gallagher, 2014). We incorporate

information frictions by modeling expectations of future sinking rates as a function of

25We abstract from leverage or other financial markets by assuming that they self-finance their capital
investment into the property at zero opportunity cost.
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rational expectations such that:

Ẽt(sju) = θEt(sju), u > t (7)

In this expression, θ parameterizes the extent of information frictions or myopic behavior

on forming expectations about future sinking; when θ = 1, property managers have rational

expectations about future sinking. As θ → 0, buyers shade their expectations about future

sinking and prices become less responsive to expected future sinking, remaining inefficiently

high as property managers overpay for homes that will sink in the future.26 This behaves

similarly to the β in the beta-delta behavioral model (Laibson, 1997; DellaVigna, 2018),

except that the discounting is only over future sinking and not all future rents.

4.3 The housing developer

In each period the developer receives plot-specific cost shocks ξjt and decides which plots to

purchase and redevelop. The developer operates only within Mexico City. Purchasing a plot

means purchasing the full measure of housing contained on it, Hjt−1. Developing involves

building new units which have zero realized sinking; the key features of development are

that it allows the developer to adjust the housing stock on the plot and it “resets” realized

sinking to zero. Their plot-specific profits conditional on developing are:

πjt = max
Hjt

pjt(0)Hjt − ξjtH
1+η
η

jt︸ ︷︷ ︸
Variable profits from developing

− pjtHjt−1D︸ ︷︷ ︸
Cost of acquiring, renewing plot

, η > 0 (8)

where η is the supply elasticity, and pjt(0) is shorthand for the price that a developer

receives for new units that have experienced no sinking. D is renovation cost of the plot,

26In this model, θ does not update with realized sinking, but the total welfare impacts of these frictions
are the same in an alternative model in which θ < 1 only for the period that the home is first sold as a new
unit, which changes only which property developers experience negative profits. We model that θ is uniform
among property managers, but note insights from papers such as Bakkensen et al. (2019) that show that
only some mis-informed participants are needed to inflate prices.
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which is proportional to the total value of the plot.27 Because the developer competes

with property managers (the used housing stock) both when selling their units and when

purchasing plots, they take market prices as given but may make positive profits arising from

favorable productivity shocks.

Conditional on developing, the developer chooses how many units to build optimally.

Solving this problem gives:

Hopt
jt =

(
η

(1 + η)ξjt
pjt(0)

)η

π∗
jt = max{0, η̃ξ−η

jt pjt(0)
η+1 − pjtHjt−1D}, η̃ =

(
η

1 + η

)η (
1

1 + η

)

The developer will re-develop a plot if variable profits are larger than the cost of acquiring

the plot:

djt = 1
(
η̃ξ−η

jt pjt(0)
η+1 ≥ pjtHjt−1D

)
= 1

(
Ṽ S
jt ≥ 0

)
Ṽ S
jt = log(η̃) + (η + 1) log(pjt(0))− log(pjt)− log(Hjt−1)− log(D) + ξ̃jt

where ξ̃jt = −η log(ξSjt), and we assume ξ̃jt ∼ N (µ, σ2) for calculation of expected surplus

and estimation. Intuitively, higher prices for new units increase Ṽ S
jt by η + 1 because this

latent value is a function of log revenues (as opposed to quantities). We transform this

expression into a function of observable data using the price decomposition given by the

demand structure to separate realized subsidence from the rest of the price: log(pjt(0)) =

log(pjt) + γSjt:

djt = 1
(
Ṽ S
jt ≥ 0

)
(9)

Ṽ S
jt = log(η̃) + η log(pjt)− γ(1 + η)Sjt − log(Hjt−1)− log(D) + ξ̃jt (10)

27This allows demolition costs to increase with buildings that are built with better materials or that are
larger, qualities that would be correlated with higher value.
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and write housing supply as:

HS
jt = djtH

opt
jt + (1− djt)Hjt−1 ∀ j (11)

4.4 Equilibrium

Given exogenous parameters {γ, θ, η, L, {Hj0}j, δ, ρ,D} and realizations of cost shocks

{ξjt}j>0, the equilibrium consists of a set of prices {p∗jt}j, rents {R∗
jt}j, and housing {H∗

jt}j

that satisfy the following conditions in each period:

• Renters choose the plot to rent on optimally. Property managers and the developer

maximize profits.

• Property management firms make zero subjectively-expected profits:28

p∗jt = Ẽt

(
∞∑
τ=t

ρτ−tR∗
jτ

)
∀ j (12)

• The rental market clears on rents R∗
jt in each period such that rental demand given by

(5) equals (11).29

• The market for new homes clears on home prices p∗jt according to (12) and (11) given

the price function log(p∗jt(0)) = log(p∗jt) + γSjt.
30

Figure 5 visualizes these two markets. Demand for owning housing inherits its shape

from the rental market, and may be too high if information frictions inflate the value of

future rents. If re-development happens, then supply is upward-sloping from the developer’s

28This follows because these firms are competitive and we assume that there is no private information or
other advantage that firms can leverage.

29Given that (i) development decisions and the housing stock on each plot are determined before the rental
market occurs, and (ii) conditional on ownership, property managers supply rentals at zero marginal cost,
rental supply is inelastically supplied according to (11).

30Because there is only one developer competing with many property managers to purchase units, the
transaction price will be set by property manager demand. This also implies that the expectation that
property managers form of the future stream of rents will be set by the value of those rents conditional on
not redeveloping, as that is the price a developer will pay them for the asset even if the plot is subsequently
redeveloped.
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problem; otherwise it is inelastically set at the previous housing quantity. Once the housing

stock has been set by this equilibrium, the rental market takes this as given and clears on

rents so that demand for a plot equals the supply of housing on that plot. As sinking occurs,

rental prices fall on plots that have not been redeveloped to maintain all housing on the plot

occupied. Deadweight loss in the housing market comes from the over-supply of units in

sinking areas that result in losses for property managers as the flow of rents is lower than

expected on those units.

4.5 Welfare and Model predictions

The total change in welfare in the housing and rental markets in Mexico City between

counterfactuals corresponds to the total change in developer, property manager, and renter

surplus between alterative equilibria.31 Per-period developer’s surplus is their total expected

profits across all plots, taking expectations over the distribution of cost shocks:

PSt =
∑
j>0

Eξ(π
∗
jt) (13)

Objectively-expected property managers’ profits are derived by substituting (6) into (12):

Πt =
∑
j

H∗
jt

(
∞∑
τ=t

ρτ−t
(
Et(R

∗
jτ )− Ẽt(R

∗
jτ )
))

(14)

Under rational expectations, these are zero; in the presence of information frictions

(rationally) expected profits will be negative.

To account for using log rents in utility, we calculate the equivalent variation ∆D
t that

equalizes average consumer surplus between counterfactuals to characterize the change in

renter welfare. The present value of the difference in total welfare between counterfactuals

31Derivations of the welfare terms and comparative statics in the next section can be found in Appendix
G.4.
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is:

∆W = ∆Πt +
∆D

t

1− ρ
+

∆PSt

1− ρ
(15)

4.5.1 Model predictions

Examining how model outcomes and welfare behave in equilibrium sheds light on how

the housing market responds to subsidence and information frictions; we list the main

propositions here, and provide proofs in Appendix G.4. For each experiment, we consider

the difference between equilibria under different parameter values, allowing prices and the

housing stock to fully adjust.

Proposition 1: Information frictions (θ → 0) increase expected housing supply and

producer surplus on sinking plots, but have no effect on the probability of re-development.

Proposition 2: Realized sinking increases expected producer surplus and the probability

of re-development, but expected future sinking decreases expected producer surplus and has

no impact on the probability of redevelopment.

Proposition 3: Information frictions make the profits of property managers more

negative.

Intuitively, information frictions lead to an inefficiently high price being offered for new

units in sinking areas, which leads to oversupply of housing conditional on developing and

increased profits. However, because information frictions inflate housing density in sinking

areas, both the developer’s fixed cost of buying the plot (which is proportional to housing

density) and revenue (a function of expected future sinking) are too high under information

frictions, so re-development happens with the same probability regardless of the value of θ.

Expected future sinking has an analogous though opposite effect: future sinking decreases

both cost and revenues equally and therefore has no net effect on redevelopment, but it

decreases prices and therefore the number of units built conditional on developing. Realized

sinking works through a different mechanism; by directly lowering the costs of buying up a
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plot, realized sinking increases the probability of redevelopment by increasing the probability

of positive profits.32 Property managers make negative profits under information frictions,

as they over-pay for units that will sink more than they expect.

The model makes clear that three parameters are crucial for quantifying the total costs

of subsidence: γ, the per-period direct costs of subsidence, θ, the extent of information

frictions, and η, which governs the shape of the supply curve and thus the responsiveness of

supply to the market distortion. In the next sections, we derive estimating equations from

the model for these parameters and estimate them using our data on mortgage appraisals

and development.

5 Estimation

5.1 Costs of subsidence

Our granular data permits a direct approach to estimating the costs of subsidence and

capitalization of future risk that leverages within-building variation to isolate plausibly

exogenous variation in sinking.33 We solve Equation (4) for rents:

Rjt = exp{γSjt + δZjt + ejt − λ̃jt}

where λ̃jt = log(λjt)−log(λ0t), and substitute this expression into (12) to derive a relationship

between log prices and sinking:

log(pjt) = γSjt + log

(
exp(−λ̃jt + Zjtδ + ejt) + Ẽt(

∞∑
τ=t+1

ρτ−t exp{γSt+1
jτ + Zjτδ + ejτ − λ̃jτ})

)
32The impact of these policies on renters is not a direct function of sinking, as they are perfectly

compensated for sinking through decreased rents. However, they may experience benefits in alternative
equilibria where rents are lower on average due to a higher housing stock, and vice versa.

33Our approach also allows us to recognize that sinking is an individual property attribute in our appraisals
data. We also note the equivalence of hedonic and discrete choice estimators when the characteristic is
continuously “supplied” in the market, as is the case of subsidence in our setting (Bayer et al., 2007).
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where St+1
jτ =

∑τ
u=t+1 sju is the cumulative sinking from t+ 1 to τ .34

Stronger assumptions are required to make progress towards an estimating equation that

teases expected sinking from the residual. We first assume that Zjτ are time-invariant and

can be written as Zj. Next, we take two first-order approximations: first of Et(exp(γS
t+1
jτ +

ejτ − log(λjτ ) + log(λ0τ ))) around the expectations of these variables, and then of the log

function around Et(ejτ ) = ejt, Et(λ̃jτ ) = λ̃jt, and Et(S
t+1
jτ ) = 0 to arrive at:35

log(pjt) ≈γSjt + γθ

∞∑
τ=t+1

ρτ−tEt(sjτ ) + δZj − log(HS
jt) + log(HS

0t) + ujt, (16)

ujt = ejt + (1− ρ)
∞∑

τ=t+1

ρτ−t
(
Et(ejτ )− ejt + λ̃jt − Et(λ̃jτ )

)
− log(1− ρ)

and formulate the estimating equation we take to the data as:

log(pjt) = γSjt + γθ
∞∑

τ=t+1

ρτ−tEt(sjτ ) + αj + αz(j)t + Zj · tβ + ũjt (17)

By including fixed effects for identical units in the same building αj, we flexibly control

for both observed and unobserved static quality differences between appraised units (Zj, ej),

a concern that is first-order in many hedonic estimation strategies. The αj also absorb

log(HS
jt), as housing supply on the plot is fixed between appraisals. Geography by year

fixed effects αz(j)t absorb housing supply outside Mexico City (log(HS
0t)), and allow demand

shocks to vary flexibly across housing markets.36 The inclusion of linear trends by a vector

of building characteristics Zj · t approximates the Et(ejτ )− ejt terms by allowing housing of

34We are able to factor out realized sinking from the expression because (i) its impact on homes is persistent,
and (ii) because the transaction price is set by property manager’s demand, expected future rents are those
of the non-redeveloped property.

35Appendix G.1 provides more details and derivations. Note that the second-order approximation of the

expectation would add the term γ2

2 exp(γEt(S
t+1
jτ ))V art(S

t+1
jτ ); given that the variance of sinking conditional

on the property’s location is relatively small as is the value of γ, the first-order approximation likely represents
a good approximation of the expectation. The second approximation is as if homebuyers expect demand
shocks and relative rental demand to follow a random walk.

36We show robustness to specifications that define z(j) as the borough and seismic zone. There are
16 boroughs and three seismic zones in Mexico City which delineate seismic risk and construction code
requirements.
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different types to experience different market trends.37

Identification in estimating (17) requires that the expected amenities and rental demand

in the residual be independent of sinking and expected sinking conditional on the controls.

We argue that sinking is quasi-randomly assigned conditional on these controls because local

forces cannot directly influence localized sinking, and we conduct tests for parallel trends

and placebo tests to validate this argument.

First, we note that property-level fixed effects break up the strong cross-sectional

correlation in both sinking and prices, as can be seen in a map of residualized sinking

and prices in Figure 7, so our identifying variation is not broadly related to spatial trends

affecting housing markets in different parts of the city. Next, we test for pre-trends using

the microdata from the Income and Expenditure Survey (ENIGH) test for whether future

sinking predicts current rents. Rents need not be forward looking, so if they predict future

sinking conditional on current sinking that would provide evidence that local housing market

shocks are correlated with subsidence. Table 1 reports coefficients of the impact of sinking

and the present value of future sinking on rents, where the present value of future sinking

aggregates observed sinking from the survey wave to 2020 at the location of the respondent

and an estimate for sinking beyond 2020. Future sinking has no predictive power for log

rents, providing reassurance that property values are not evolving systematically before

sinking occurs.

We also test for parallel trends by examining the relationship of the composition of

the housing market with subsidence. While our approach directly controls for quality, a

correlation of the characteristics of units on the market with subsidence could be an indication

that the market is evolving in other unobserved ways that confound our estimates. Figure

8 reports the coefficients and 95% confidence intervals from regressions of the Z-scores of

unit amenities on sinking on the property. Sinking is uncorrelated with these amenities,

and all point estimates imply a treatment effect less than 0.025 standard deviations in size.

37Our most stringent specification includes linear trends that vary by the borough and type (single family,
apartment, etc.), but we show that our results are robust to using subsets of these controls.
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For the hedonic index that aggregates all of these, the (insignificant) treatment effect of a

meter of subsidence is less than 0.01 standard deviations. These results are reassuring that

the housing markets that sinking plots are located in are not becoming systematically lower

quality.

Thus far we have found no evidence that housing markets in sinking areas have

confounding trends that are correlated with sinking. In Section 5.3.1 we discuss other

pre-trends tests and conduct placebo and other robustness exercises, but now proceed with

the presentation of our results estimating the costs of subsidence.

5.1.1 Results

Table 2 reports the results of estimating Equation (17). Standard errors are clustered at the

census tract. We formulate expectations as both an AR(1) process estimated at the plot level

in Columns (1) and (2), and as a “perfect foresight” measure that uses observed sinking on

the plot post-transaction in expectations in Columns (3) and (4). Regardless of the manner

of specifying expectations or the discount rate chosen, realized sinking has a consistent and

negative impact of appraised values, with a meter of sinking causing a 6% fall in appraised

value. Given that the average property in our sample sank 25 centimeters over 10 years, this

implies a 1.5% average decrease in values per decade.

We do not detect a role for future sinking in impacting prices in any specification, and in

all cases estimate a value of θ that is statistically indistinguishable from zero. However, these

estimates will be biased towards zero if we mis-specify the formulation of expectations or if

the specification directly absorbs expectations (Dickstein and Morales, 2018). For example,

we would expect to estimate γ̂θ = 0 for a home buyer that expects that the sinking rate is

a constant on the plot, since this would be absorbed by our fixed effects.

We address this by relaxing our spatial controls in Table 3, which shows the results

of estimating (17) only for new builds, replacing our property fixed effects with 500-meter

grid cell fixed effects which permit more systematic variation in future expectations to enter
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estimates. We again find that expected future sinking has no statistically detectable or

economically meaningful impact on appraised values in both ways of specifying expectations.

However, given that we are limited in our ability to mitigate the attenuation bias that may

affect these estimates, we complement these findings with qualitative survey evidence that

households struggle to draw accurate inference about future subsidence risk.

5.1.2 Survey evidence on information frictions

Measuring information frictions about environmental hazards is complicated by the fact

that residents may have information that they cannot accurately communicate in easily

comparable units- for example, a homeowner may know their home has sunk “a lot” and

have a strong idea about future sinking, but is not sure about how many centimeters this

represents. We address this issue by focusing on the symptoms of information frictions,

such as difficulty inferring risk, attention, and surprise, as in the first set of survey results

visualized in Figure 3.

Figure 9a plots the share of different responses to the question, “How can you know if

a home will have issues with sinking in the future?”, separated by respondents in high and

low risk boroughs.38 21% of respondents say it is impossible to know in advance whether a

home will have issues with sinking, and despite the strong spatial correlation in sinking, only

21% report that you can infer risk by knowing the home is in a risky area. Grouping these

responses into ex-ante ways of knowing, which do not require that a home be affected yet,

such as asking an expert or the risk zone, and ex-post ways of knowing (seeing the effects

in the home or plot) in Figure 9b, we find that residents of low sinking boroughs are 47%

more likely to report using ex-ante available factors to infer risk. This suggests that residents

with less information are less likely to locate in high-sinking homes, a finding consistent with

insights from real estate models that highlight that the least informed buyers will sort into

and bid up prices in risky places (Bakkensen and Barrage, 2022).

38This question was free response, and we prompted respondents for more answers until they indicated
they could not come up with any more.
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We show that this finding together with the results in Figure 3 are robust to controlling

for respondent and housing unit characteristics, including the education of the respondent,

in Table 4. Furthermore, Table A3 in the Appendix confirms that these effects are even

stronger overall when limiting to residents who moved within the last 10 years, assuaging

concerns that results are driven by selective recall or habituation.

We implement Falk et al. (2016) instruments for measuring risk preferences and discount

rates to test whether these sorting patterns are driven by residents with higher tolerance for

risk or higher discount rates locating in high-risk units, a first that we are aware of for the

literature on environmental risk and housing markets. Appendix Table A4 reports results.

We find that discount rates are not correlated with either the sinking on the resident’s plot

over the last 5 years or the relative altitude change over the last 5 years. We pick up no

correlation with plot-level sinking on measured risk aversion, and if anything residents of

neighborhoods with highly uneven sinking show higher measured risk aversion, suggesting

that our results cannot be explained by residents with high risk tolerance or discount rates

buying sinking homes.

Finally, we directly test how accurate respondents’ information about the spatial

distribution of sinking risk is in Appendix Figure B4, which grades respondents on a

question where we ask them to name boroughs that have had issues with sinking, and shows

that the median respondent commits substantial Type 1 and Type 2 errors when trying to

name high-risk areas.39

Together, these findings suggest that respondents face substantial information frictions

about subsidence, and that these frictions are particularly related to the ability to infer the

probability of future subsidence absent realized sinking. We also find evidence that residents

sort on information about subsidence, with less informed residents being more likely to live

in high-sinking properties. These findings echo insights from papers in the United States

39We grade respondents on two measures: how many boroughs we consider to be high risk that they name,
and how many boroughs they name that we would consider to be high risk. For the former, respondents
may interpret the question with different degrees of severity and name a subset of all high-risk boroughs.
For the latter, respondents may be aware of outlier high-sinking cases in otherwise low-risk boroughs.
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that find that realizations of floods or hurricanes drive discounts of environmental risks in

housing prices (Gibson and Mullins, 2020; Bakkensen et al., 2019; Ortega and Tas.pınar,

2018), and that less informed residents sort into riskier settings (Bakkensen and Barrage,

2022; Wagner, 2022).40

5.1.3 Mechanisms: How does realized sinking affect homes?

Our findings in Table 2 show that plot-level sinking imposes important losses to home values,

but what is driving the losses from realized sinking? Sinking damages structures, but it is

possible that homeowners are able to invest in maintenance and other remedies that offset

these damages. We explore these mechanisms in Table 5, where we simplify estimation by

only including realized subsidence. Column (1) reports the result of estimating our repeat

appraisal specification, but replacing the outcome with the appraised years of life remaining

for the home.41 This measure captures the appraiser’s estimate of the years of inhabitable life

left for the structure, and provides an estimate of how degraded or depreciated the physical

building is. We find that sinking has a pronounced negative impact on the appraised life

remaining of the home: a meter of sinking causes a reduction of 4.4 years of remaining life,

and the average home lost 1.1 years of life at the average 10-year sinking of 25 centimeters

compared to a home that experienced no sinking.

Our survey evidence on the relationship between the physical state of homes and sinking

also provides correlational evidence that sinking depreciates structures. Columns (2) through

(5) regress indicators for whether a respondent reports different structural issues in their

home that could be caused by subsidence on our satellite measure of the total sinking on the

survey respondent’s home. Column (2) shows that a meter of sinking on the respondent’s

home increases the probability of reporting severe structural issues by 17% relative to the

mean in the low-sinking strata and increases the probability of reporting issues with levelling

40Consistent with this idea, we find suggestive evidence that capitalization of future sinking into the price
of new builds is higher in boroughs with slower sinking rates on average in Appendix Figure B5.

41Appendix Table A5 reports the result of all specifications for this outcome.
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and cracks in walls by 20% and 28%, respectively.

Do residents invest in maintenance in response to these damages? Table 6 reports the

correlation of survey measures of maintenance investments with sinking on the respondent’s

plot. While we do not find that sinking is associated with intensive margin increases on

the probability of incurring maintenance expenses, we do find that a meter of sinking is

correlated with a large increase in spending on maintenance by 44% conditional on incurring

any spending. Sinking is also associated with an 18.8% fall in the respondent’s assessment

of when they will have to make their next “large investment” in the home, suggesting that

residents are pulling forward investments in the home.42

Finally, we look for evidence that subsidence induces complementary investments in

maintenance or home improvement activities that are not related to subsidence, as these

could bias our estimates towards zero if they increase the market value of the home. We

test for this in the last column of Table 6 by regressing an indicator for the respondent

incurring any spending on non-sinking related issues (additions, remodeling, electric work,

painting, or waterproofing) on sinking on the home. We find no statistically significant

or economically meaningful relationship between sinking and complementary investments,

assuaging concerns that these cause us to underestimate the direct costs of subsidence.

5.1.4 Mechanisms: Uneven sinking across neighborhoods

So far we have focused on the impact of plot-level sinking on home values, but uneven

sinking across neighborhoods also has the potential to reduce the desirability of a property

through its impact on public infrastructure. We study this by introducing our measures of

the unevenness of sinking over space- the cumulative relative sinking of the grid cell relative

to its neighbors and the standard deviation of sinking- into our main specifications.

Table 7 reports results. Columns (1) and (2) report the result of estimating the repeat

42We find a similar result using spending on maintenance from the income and expenditure survey in
Appendix Table A6, though in these data we are only able to detect extensive margin increases in the
probability of incurring maintenance costs.
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appraisal design on plot-level sinking and our measures of uneven sinking. Column (1)

reports results from including the cumulative relative altitude change across 500m grid cells

and Column (2) includes the standard deviation of sinking within the 500m grid cell. Both

measures have a negative impact on price, but changes in the relative altitude have a larger

effect on values: The average change in relative altitude across grid cells causes a 1% fall

in appraised values. The impact of locally uneven sinking, as measured by the standard

deviation within the grid cell, is much smaller, with the average change in the standard

deviation of sinking causing a 0.07% fall in appraised values.

In Columns (3) through (6) we use survey reports of infrastructure issues in the

neighborhood to estimate the physical impacts of uneven sinking on the probability that

a neighborhood experiences flooding or fissures in pavement or roads. First, we see that

plot-level sinking has no significant relationship with the probability of these infrastructure

issues, underscoring the intuition from civil engineering studies (Hu et al., 2013) and the

Mexico City government’s own qualitative reports (Secretaŕıa de Gestión Integral de Riesgos

y Protección Civil, 2018) that the damages caused by subsidence on macro-infrastructure

are driven by uneven sinking across neighborhoods, not just localized sinking.

Column (3) shows that a respondent is 2.85% more likely to report that their

neighborhood has issues with flooding at the average relative altitude change of 2.8

centimeters. By contrast, the standard deviation of sinking within the grid cell is not

predictive of this outcome (Column (4)). Fissures in roads or sidewalks show the opposite

pattern: relative altitude change does not predict fissures, but increasing the standard

deviation of sinking within the cell by one meter is correlated with a 93% increase in the

probability that a respondent reports issues with fissures. These findings suggest that

which of unevenness matters for infrastructure depends on the which types of infrastructure

one is interested in; while relative altitude change, which measures the change in relative

slopes, affects the probability of flooding, it seems that local unevenness, as measured by

the standard deviation, is more predictive of fissures in roads.
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Summing up We have found that subsidence has large direct costs and that home values

do not show evidence of strong capitalization of future risk. For welfare analysis, we set

conservative values for our demand parameters, setting the costs of subsidence to γ =

−0.06 and the extent of information frictions θ = 0.08, the highest value estimated in any

specification (Column (4) of Table 3). In the next section we leverage the fact that uneven

sinking across grid cells also shifts demand, using this variable as an instrument for prices

in supply estimation.

5.2 Supply response to subsidence

The supply model highlights the role that realized subsidence plays in increasing the

probability of development by lowering the opportunity cost of redeveloping existing,

degraded units. In this section, we exploit this relationship to estimate the supply elasticity

using the responsiveness of re-development to realized sinking and prices.

5.2.1 Reduced-form evidence for model predictions

We begin by testing our model prediction that realized sinking draws in development in

two ways. First, we use our matched development-appraisal data to test whether homes

that have sunk more are more likely to be sold for redevelopment. Table 8 reports the

results of regressing of an indicator for an appraisal being redeveloped on the sinking it

has experienced to date and a battery of property characteristics, including the age of

the building. Strikingly, Columns (2) and (3) show that sinking strongly predicts whether

an appraisal is for the purpose of re-development, with a meter of sinking increasing this

probability by 0.5 percentage points over a mean probability of 0.89%. Consistent with

irregular neighborhood sinking making neighborhoods less attractive, changes in relative

altitude decrease the probability of redevelopment conditional on plot-level sinking, though

noisily so. Including the appraised price as a control in Column (3) does not change these
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conclusions.

As an alternative test, we use our panel of pixels to estimate the impact of sinking on

the probability of that construction begins on a new development in pixel j in year t. This

approach allows for less detailed analysis of the exact characteristics of the unit, but does

not require us to rely on accurate identification of transactions that were later redeveloped.

Table 9 reports results for varying ways of controlling for time trends, and our most flexible

specification in Column (3) implies that a meter of sinking on a pixel from 2007-t increases

the probability that construction will begin on a new development in that pixel by 8.2%.

5.2.2 Estimating the supply elasticity

We estimate the supply elasticity using the model-derived redevelopment decision given by

(9) and (10), which tracks the response of development to subsidence. However, estimation

is challenged by the endogeneity of cost shocks ξ̃jt with prices. Specifically, supply shocks

cause movement along the demand curve in equilibrium, which biases elasticity estimates

that ignore this effect toward zero. Our solution is a control function approach. Following

Petrin and Train (2010), we impose additional structure on the distribution of cost shocks

and identify a demand shifter as an instrument for prices, which allows us to derive a control

function that absorbs the endogenous part of the error term.43 We propose the following

first stage equation derived from our demand model:

log(pjt) = ΠRel. Altitude Changejt + γSjt + αn(j) + αt +Xjtβ1 + ũjt (18)

where Rel. Altitude Changejt is the relative altitude change of the grid cell containing j

from 2007 to t, αn(j) are census tract n(j) fixed effects, αt are year and calendar month fixed

effects, and Xjt are appraisal controls including age, type, number of bedrooms, and number

of bathrooms. We assume that ξ̃jt is distributed joint normally with log prices, with constant

43Control functions are numerically equivalent to IV estimation in the linear case, and can be extended
to non-linear estimation under certain conditions. Appendix G.5 provides a proof of the validity of using a
control function in this context (Blundell and Matzkin, 2014).
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variance σ and marginal expectation E(ξ̃jt| log(ejt)) = CF (log(ejt);ϕ) for some parameter

ϕ. Then we can re-write our redevelopment condition in (10) by adding and subtracting the

control function and adding the controls from the first stage:

djt = 1

(
1

σ∗ Ṽ
S
jt ≥ 0

)
1

σ∗ Ṽ
S
jt =

η

σ∗ log(pjt)−
γ(η + 1)

σ∗ Sjt +
1

σ∗CF (log(ejt);ϕ) + α̃n(j) + α̃t +Xjtβ2 +
ξ̃∗jt − µ∗

σ∗

(19)

where our distributional assumptions imply that ξ̃∗jt = ξ̃Sjt − E(ξ̃Sjt| log(ejt)) is normally

distributed with mean µ∗ and standard deviation σ∗. Thus this is estimated via Probit,

including the control function as a regressor.44 Because of the assumption of joint normality,

the control function is a linear function of the first stage residuals, i.e. CF (log(ejt);ϕ) =

ϕ ̂log(e)jt, and we show robustness to mis-specification by showing that our results are

unchanged when including higher order polynomial approximations of this function.

To be considered a valid demand shifter, uneven grid sinking must satisfy the exclusion

restriction: it must influence redevelopment solely through its impact on prices. This means

the sinking cannot have a direct effect on development costs, conditional on the census tract

and other controls we include. Evidence from structured interviews with civil engineers

working for construction firms in Mexico City corroborates this assumption. Engineers

confirm that construction code regulations mandate plot-specific soil mechanics tests, which

are not designed to predict future subsidence or account for sinking in adjacent locations.45

The inclusion of census tract fixed effects further controls for unobserved, location-specific

supply factors, such as underlying soil conditions and local construction code requirements

44We prove that the new error term
ξ̃∗jt−µ∗

σ∗ is mean independent of prices given a valid instrument in
Appendix G.5.

45The purpose of soil mechanics tests is to ensure that the structure itself does not induce sinking, and
thus these report static characteristics according to the geology of the plot. Interviews with civil engineers
operating in Mexico City suggest that these tests provide limited information about how much sinking has
occurred beyond the static risk implied by the geology, and do not make predictions about how much future
sinking will occur unrelated to the structure’s impact.
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which vary by seismic zone. Finally, we provide empirical evidence in Section 5.3.2 that

trends in uneven sinking are uncorrelated with other relevant supply trends.

Table 10 reports the results of estimating (19). Confidence intervals are estimated via

clustered bootstrap to account for the fact that the control function is estimated from the

first stage. Column (1) reports the first stage results from regressing log prices on uneven

grid cell sinking and controls. Uneven sinking lowers prices conditional on tract fixed effects

and unit-level controls, and with an F-statistic of 10.6 the first stage is sufficiently powered.

In line with model predictions, both linear IV (Column (2)) and Probit estimation with

the control function (Column (3); average marginal effects reported in Column (4)) find that

redevelopment responds positively to prices and realized sinking. While the magnitude of

the coefficients in Column (2) is not interpretable due to the unidentified scale parameter,

Equation (10) implies that we can estimate the elasticity as η = ε̂/(1 − ε̂), where ε̂ =

βp/βS × γ,46 which implies a supply elasticity of 0.28.

This estimate is robust to including a more flexible polynomial approximation for the

control function in Column (5). We see that the control function is crucial for addressing

bias by comparing these results to estimates that exclude the control function in Column (6),

which implies an elasticity near zero. Our estimate of η =0.28 is in line with recent papers

that measure within-city housing supply elasticities for the United States (Baum-Snow and

Han, 2024; Rollet, 2025).

5.3 Validation and robustness

5.3.1 Estimates of the cost of subsidence

Our estimates of the costs of subsidence are robust to using subsets of our fixed effects

and linear trends. Table A7 in the Appendix reports estimates of the effect of subsidence on

appraisal values for different relaxations of these controls, and we estimate similar magnitude

46Confidence intervals are calculated over estimates of η in each bootstrap sample, and in each sample γb
is drawn from a normal distribution centered around the point estimate with standard deviation equal to
the standard error of this estimate.
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effects in all cases. Results are also robust to modeling potential measurement error in

subsidence; Figure B6 plots the distribution of p-values from a Monte Carlo simulation that

models noise in the calculation of the subsidence rate distributed normal with mean zero and

standard deviation of 10 millimeters, a conservative estimate of the measurement error for

SAR Interferometry in other settings (Liu et al., 2020; Bawden et al., 2023), showing that

accounting for this uncertainty does not change results.

We next conduct a placebo test by testing for whether the subsidence of a plot’s

neighboring pixels affects prices. This serves as a test for whether the increased probability

that my neighbors are re-developed introduces a confounder, as sinking neighborhoods

could experience gentrification induced by new builds. In order to address the fact that we

cannot observe the ages of neighboring properties, we run an analogous specification to (17)

but in differences, as we can observe the change in sinking for neighbors. Table A8 in the

Appendix shows that sinking on neighboring plots is not correlated with housing values,

giving confidence that we are measuring the impact of damage to the home itself, not other

trends in the neighborhood.

Subsidence and seismic risk are very correlated in the cross section. If housing market

trends related to seismic concerns are evolving in way that is correlated with shocks to

subsidence, then our estimates may pick up these trends. To test for this, we estimate

Equation (17) excluding years after 2017, as the major earthquake that hit Mexico City in

2017 may have impacted the evolution of the housing market in ways that are correlated

with sinking. Table A9 in the Appendix reports results, which if anything are stronger when

limiting to the pre-2017 period, reflecting that our estimates pick up changes in sinking, not

broad trends associated with the Eastern part of the city.

Our main pre-trends test looked for evidence that future sinking was correlated with

rents, but we can also use our price data directly to test if changes in home prices predict

changes in sinking. Figure B7 compares the relationship between price changes between

appraisals and sinking between the appraisals (blue), and price changes and future sinking
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(pink). While sinking and price changes over the same period are negatively correlated,

there is no significant relationship between lagged price changes and sinking between the

next set of appraisals. Comparing coefficients on a regression of these, lagged prices are an

insignificant predictor of sinking, and the point estimate on lagged prices is 66% that of the

point estimate on contemporaneous sinking.47

We verify that results are not driven by mechanical appraiser valuation of subsidence by

dropping localities where the median difference between appraised and transaction values in

the R04 data is greater than 1%. Table A10 reports results, which are quantitatively and

qualitatively very similar to our main estimates.

The significance of our results is robust alternative ways of estimating standard errors.

Table A11 reports the results from our different specifications using a 2-kilometer radius for

calculating Conley standard errors. Estimates are generally more precise when using Conley

standard errors, as differencing within property reduces the strong spatial correlation in

outcomes.

Finally, we test for whether changes in appraised values are driven by mortgage penalties

on sinking homes. If banks charge higher interest rates on homes that are prone to sinking,

then the changes in values we estimate may represent discounts that the market offers to

offset these rates. Table A12 in the Appendix estimates the cross-sectional correlation of

the sinking intensity of the census tract with the interest rate charged on mortgages on that

tract using the R04 data, finding no evidence that banks assign differential interest rates to

high sinking areas.48

47Note that if home buyers use past sinking as a signal of future sinking even conditional on the home’s
location, then this test would not be model-consistent as forward-looking home buyers should incorporate
their expectation of future sinking into prices today.

48A limitation of this test is that we cannot observe mortgages that were not approved by the bank, so
there may be extensive margin mechanisms through which the mortgage market addresses subsidence that
we cannot identify.
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5.3.2 Supply estimation

We investigate whether new developments in sinking areas are systematically different from

developments in non-sinking areas. This test addresses the possibility that developers may

adapt to sinking— for example, by building at lower heights or including different amenities—

choices that could directly affect their costs. However, Tables A13 and A14 in the Appendix

show that we cannot reject the hypothesis that developments in sinking areas are built with

similar heights and amenities as those in other areas; in terms of observables, developments

appear similar regardless of past and future sinking.

Identification in our supply estimation requires that redevelopment trends similarly across

areas, both in terms of plots experiencing high versus low sinking and in neighborhoods with

uneven versus uniform sinking. To test this assumption, we compare pixel-level development

trends between areas with high and low sinking intensity. Intuitively, this comparison focuses

on comparing the trends of pixels that were never sinking quickly with those that started

sinking quickly later in the panel. To formalize this, we classify a pixel as “high sinking” using

a cut-off based on the 2020 distribution of sinking rates and define the pixel as “treated”

starting in the first year its sinking rate reaches that threshold.

Figure B8 shows the results from the Sun and Abraham (2021) event-study estimates,

which exclude pixels that were always fast-sinking. The results confirm that the not-

yet-sinking pixels were trending similarly to the never-sinking pixels before the sinking

accelerated. Crucially, it is only after pixels begin showing higher rates of sinking that

the high-sinking pixels demonstrate an increased probability of development compared to

the never-sinking group.
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6 The costs of subsidence and policy implications

6.1 The costs of subsidence and the benefits of disclosure

We estimate the costs of subsidence and the benefits of alleviating information frictions by

calculating the difference in welfare between the observed equilibrium and a counterfactual

equilibrium according to (15). First, we estimate the total costs of subsidence by comparing

welfare in the observed equilibrium to one in which all expected future sinking is set to zero

(Et(sjτ ) = 0 ∀j, τ > t). We then turn to the benefits of disclosure laws that reveal the

rationally-expected value of future subsidence to property managers through two policy

experiments. The first estimates the gains from implementing disclosure laws without

addressing subsidence, which we model as a counterfactual in which sinking is unchanged but

θ = 1. Second, we estimate how costly subsidence would be in an environment of rational

expectations by comparing a counterfactual equilibrium with θ = 1 but sinking is as in

baseline to one in which θ = 1 and expected future sinking is zero.49

Figure 10 depicts the gains from these counterfactuals, expressed in billions of 2018 USD.

The leftmost red bar depicts the welfare benefits from eliminating future subsidence. We

estimate that subsidence costs Mexico City $33 billion USD, which annualized represents

about 1% of Mexico City’s GDP. Almost all of these costs are borne by property managers,

who lose out on lower-than-expected rents; these losses represent the “bad investment” losses

that home owners make by over-paying for sinking homes that degrade faster than they

expected. Subsidence also costs the developer, but only slightly: Expected future sinking

depresses the value of the housing stock and therefore their profits, but this has a muted

impact when information frictions preclude capitalization of these gains. Renters enjoy small

gains as well, as the higher housing stock in the city lowers rents.

The blue bars depict the changes in welfare from implementing disclosure laws.

Eliminating information frictions generates a gain of $18.2 billion USD, which represents

49Appendix Table A15 summarizes the parameters needed to calculate welfare and how each is estimated
or calibrated, and details on how we find counterfactual equilibria are available in Appendix G.6.

41



55% of the gains from completely eliminating subsidence. With no information frictions,

property managers again gain as they go from making negative profits to zero profits.

Housing developers lose out in the no information frictions counterfactual relative to

baseline, reflecting the downward adjustment in the inefficiently high housing stock that

they benefited from under information frictions. Renters dislike the higher rents they pay

when housing supply falls.

Finally, we can compare the total costs of subsidence (red bars) to what the costs of

subsidence would be in a counterfactual with no information frictions, which is represented by

the yellow rightmost bars. We see in this comparison that property managers are indifferent

to the change in subsidence, as they make zero profit in both scenarios. The developer gains

from the mitigation of subsidence, as they benefit from the increased value of the housing

they build. It is also of note that policies that mitigate subsidence and policies that mitigate

information frictions create very different set of winners and losers over space. Figures B9

and B10 in the Appendix show that mitigating subsidence leads to housing value gains for

incumbent property managers in sinking areas and increases in density, whereas mitigating

information frictions alone leads to price depreciation in sinking areas.

These estimates provide a measure of the total cost of subsidence at current levels; in order

to price groundwater pumping as the externality-generating action, we must convert this to

dollars per unit of water pumped. We do this using calibrated hydro-physical relationships

between aquifer storage and subsidence in the Mexico City Valley; Appendix H provides

details. Combining our total cost estimate with the elevation-to-pumped volume conversion

implies that subsidence costs the city $0.89 per cubic meter pumped.

Comparing this tax to the water tariffs Mexico City residents pay in Table 11, which are

heavily subsidized for most residents, this amounts to an 52-293% increase over the average

marginal rate paid by residents, and would add 32-299% to the average total bill.50 Such

increases are likely politically infeasible, and we study the cost-effectiveness of alternative

50We assume that 60% of the water bill is taxed, the average share of water in Mexico City that comes
from groundwater extraction.
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policies in the next section.

6.2 Cost-benefit of other recharge policies

If significantly increasing water tariffs is not possible, are there other cost-effective options

for abating subsidence? We explore the potential cost-effectiveness of four policies that

have been implemented at some point in Mexico City that would permit offsetting

groundwater pumping: investment in wastewater injection, repairing leaks in the water

delivery infrastructure, investing in new sources of water, and wastewater recycling plants.51

These analyses should be taken as suggestive; while policy interest and previous investments

in each of these options over the last 30 years in Mexico City provide some idea of potential

costs (SACMEX, 2012), current and accurate cost data for these types of investments would

improve these estimates.52

Table 12 reports the results of these analyses. While wastewater recycling has the

potential to offset the largest volume of water, the cost of building and operating these

facilities means they are the least cost-effective option, and this is driven primarily by our

estimate of how expensive it is to treat grey water. Repairing leaks, on the other hand,

saves the least amount of water, but its benefits dramatically outweigh the costs assuming

that these repairs do not take away from recharge. Wastewater injection also shows great

promise in terms of cost benefit analysis, and its benefits would be even larger when spatial

targeting is taken into account.53 Finally, investing in new sources of water from outside the

basin also have benefits that are substantially higher than costs, underscoring that the costs

of subsidence are high enough to justify substantial policy intervention.

51We assume that all leaks are repaired on surface water sources before entering the basin, so that all
water diverted from leaks would not have otherwise contributed to aquifer recharge. This is an important
assumption, as CONAGUA (2024) estimate that most groundwater recharge on the Mexico Valley aquifer
comes from water infrastructure leaks, so the groundwater impacts of repairing leaks within the city are
unclear.

52Detailed documentation of the assumptions made and cost sources for each of these are available in
Appendix H.1.

53We assume that wells evenly affect subsidence across the city in these calculations, but if wells are built
near areas that are subsiding quickly then the imperfect connectivity of the aquifer means that this would
have a larger local impact on subsidence, potentially increasing the gains even further.
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7 Conclusion

In summary, we conduct a comprehensive valuation of the costs of subsidence in Mexico

City, finding that subsidence costs Mexico City over 33 billion USD, 55% of which are driven

by information frictions that drive over-supply of housing in hazardous areas. These losses

are driven by accelerated depreciation of sinking homes, which experience loss of useful life

and increased structural risk and cracks. Neighborhood impacts from uneven sinking over

space also play an important role in lowering home values, as neighborhoods see significantly

more flooding in response to uneven subsidence relative to surrounding areas.

Importantly, our estimates exclude city-wide costs that are shared among residents. For

instance, our estimates do not capture expenditures incurred by the city government to

repair water main breaks or sinkholes or replace macro-infrastructure as the main sewer line

servicing the Mexico City that had to be replaced when subsidence altered the slope beyond

repair (SACMEX, 2012). While these should be included for a full cost analysis, our estimate

likely captures the largest part of the costs of subsidence as it is orders of magnitude larger

than the costs of the entire budget of the water utility ($528 million USD in 2024), the cost

of the Cutzamala surface water system ($33 million USD in 2021), or the cost of the recent

drainage system replacement ($65 million USD).

More generally, our framework provides a systematic way of thinking about re-

development in places that experience evolving environmental hazards such as climate

impacts, erosion, or floods. Our model highlights the different economic role that realizations

of environmental hazards play in driving re-development, as compared to expected future

hazards that must be capitalized correctly into home values in order for the aggregate

amount of housing in harm’s way to be efficient. We find that information frictions about

future realizations of environmental hazards, which have been found to be widespread

in different contexts, can severely exacerbate the costs of these types of externalities by

over-supplying housing in risky areas.
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A Tables

Table 1: Effect of future sinking on rents

log Rent (1) (2) (3) (4)

NPV future sinking (m) -0.002 -0.011 -0.011 -0.013
(0.008) (0.008) (0.008) (0.010)

N 702 702 702 702
Hedonic controls X X X X
Type x Borough FEs X X X X
Year FEs X
Year x Borough FEs X X X
Locality FEs X X
N. bedrooms x age trends X

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: The outcome in every column is the log rents. All regressions include controls for log
household income, an indicator for having a solid roof, and property-level sinking from the time
of construction to the year of observation. Standard errors clustered at the census tract.
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Table 2: Impact of plot sinking on appraisal values

AR(1) Perfect foresight

3% 6% 3% 6%

Property-level sinking (m) -0.06052*** -0.06049*** -0.06075*** -0.06045***

(0.01968) (0.01968) (0.01992) (0.02001)

NPV future sinking 0.00009 0.00061 -0.00009 0.00012

(0.00095) (0.00386) (0.00076) (0.00238)

Observations 129,424 129,424 129,424 129,424

θ -0.002 -0.01 0.001 -0.002

SE (0.016) (0.064) (0.012) (0.039)

ATE: plot sinking -0.92% -0.92% -0.92% -0.92%

Mean sinking between observ. (m) 0.151 0.151 0.151 0.151

Property FEs X X X X

Age FEs X X X X

Zone x year FEs X X X X

Borough x age trends X X X X

N. bedrooms x age trends X X X X

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: The outcome in all regressions is the log appraised value of the home. All estimates include
property, age, and seismic zone by year fixed effects, and include linear time trends by borough
and the number of bedrooms. Estimation limited to properties with more than one appraisal.
Standard errors clustered at the census tract. The Average Treatment Effect (ATE) is calculated
by multiplying the reported coefficient by the average sinking between observations in meters.

53



Table 3: Price response to expected future sinking, new builds

(1) (2) (3) (4)

AR(1) expectations

NPV future sinking -0.006 -0.006 -0.004 -0.005

(0.005) (0.005) (0.005) (0.004)

Observations 102,909 102,909 102,806 102,857

θ 0.100 0.100 0.066 0.083

Mean NPV future sinking 12.003 12.003 12.006 12.004

ATE: Future sinking -7.43% -6.92% -4.59% -5.89%

Grid cell FEs X X X X

Year FEs X

Year x Seismic Zone FEs X X X

Hedonic controls X

Time trends by hedonic chars.

Perfect foresight

NPV future sinking -0.008 -0.007 -0.004 -0.004

(0.005) (0.005) (0.004) (0.004)

Observations 102,909 102,909 102,806 102,857

θ 0.133 0.117 0.067 0.067

Mean NPV future sinking 13.167 13.167 13.17 13.168

ATE: Future sinking -10.28% -9.07% -5.38% -5.09%

Grid cell FEs X X X X

Year FEs X

Year x Seismic Zone FEs X X X

Hedonic controls X

Time trends by hedonic chars. X

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: The outcome in all regressions is the log appraised value. Regressions limited to new
builds. Standard errors clustered at the census tract. The Average Treatment Effect (ATE)
is calculated by multiplying the reported coefficient by the average net present value of future
sinking in meters assuming a 6% discount rate. “Ar(1) expectations” calculate the net present
value as a function of the rate of sinking; “Perfect foresight” uses the observed sinking post sale
through 2020, and then uses a fixed projected rate for subsequent years. Estimates of θ assume
γ = −0.060.
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Table 4: Survey evidence on sorting and attention to sinking

Suprised by severity Ex-post factors used Ex-ante factors used

Sinking in last 5 years (m) 0.287* -0.020 -0.171*

(0.145) (0.150) (0.101)

N 794 800 800

Mean Y (low sinking) 0.254 0.493 0.451

Strata FEs X X X

Borough FEs X X X

Education FEs X X X

Respondent age FEs X X X

Respondent gender FEs X X X

* p <0.1, ** p <0.05, *** p <0.01

Notes: Outcomes in order of appearance are an indicator for using any ex-post factors (seeing
effects in the home or neighborhoods) to infer future probability of having issues due to sinking,
an indicator for using any ex-ante factors (asking an expert, asking around, the news, the risk
zone, examining construction quality), and an indicator for reporting having considered sinking
when they moved in. “Sinking in last 5 years” is the total property-level sinking over the last
5 years in meters. All specifications include survey strata, borough, respondent age, respondent
gender, and respondent educational attainment fixed effects. All regressions weighted by sampling
weights. Standard errors clustered at the census tract.

Table 5: Survey evidence: Sinking and structural issues

Does your home have any issues with...?

Useful life
remaining

Structural
issues

Levelling
issues

Cracks:
Hallways

Cracks:
Walls

(1) (2) (3) (4) (5)

Sinking (m) -4.408*** 0.100*** 0.053* 0.033 0.078**
(1.643) (0.036) (0.030) (0.031) (0.037)

Data source Repeat appraisals Survey Survey Survey Survey
Observations 129,475 800 800 800 800
Mean Y 63.310 0.59 0.26 0.20 0.28

Notes: Standard errors clustered at the census tract. Column (1) regresses the appraised years of life
remaining on total sinking on the property, controlling for property, age, and zone by year of appraisal fixed
effects and time trends by borough, number of bedrooms, and type. These estimates exclude properties with
only one appraisal. In Columns (2) through (5), all outcomes are indicators for reporting the stated issue
in their home and the regressor is the total sinking on the property in meters from the year of construction
(or 2007, whichever is later) to 2025. Columns (2) through (5) include survey strata, borough, respondent
age, respondent gender, and respondent educational attainment fixed effects and are weighted by sampling
weights.
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Table 6: Survey evidence: Sinking and maintenance expenditure

Any
spending

log
Spending
(MXN)

log Years
until next

big investment

Any spending
on non-sinking
related issues

Total sinking on home (m) 0.002 0.443** -0.188** -0.004

(0.044) (0.175) (0.089) (0.034)

N 625 359 616 623

Mean Y (low sinking) 0.578 9,152.879 6.707 0.301

* p <0.1, ** p <0.05, *** p <0.01

Notes: Standard errors clustered at the census tract. Outcomes in order of appearance are: An
indicator for any spending on maintenance; log total spending on maintenance over the last 6
months; the log of respondent’s estimated time in years to the next large investment in the home;
and an indicator for the household mentioning any non-sinking category of response: electric work,
remodeling, painting interiors or exteriors, additions, water-proofing, or replacing windows. “Total
sinking on home” is the total subsidence on the property in meters from the year of construction
(or 2007, whichever is later) to date. All specifications include survey strata, borough, respondent
age, respondent gender, and respondent educational attainment fixed effects. All regressions
weighted by sampling weights.
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Table 7: Neighborhood sinking impacts home values and damages public infrastructure

log appraised
value

Reports issues
with flooding

Reports issues
with fissures

(1) (2) (3) (4) (5) (6)

Property-level sinking (m) -0.046** -0.055*** -0.026 -0.015 -0.005 -0.158

(0.020) (0.020) (0.121) (0.116) (0.170) (0.132)

Abs. relative altitude change (m) -0.161*** 0.630*** -0.309

(0.059) (0.194) (0.513)

SD of sinking within 500m (m) -0.118** 1.296 0.578**

(0.048) (2.995) (2.265)

Data source Repeat transactions Survey Survey

Observations 129,427 16,438 800 800 800 800

Mean Y 0.112 0.112 0.620 0.620 0.621 0.621

Mean Sinking measure 0.151 0.151 0.263 0.263 0.263 0.263

Mean Unevenness measure 0.063 0.006 0.028 0.005 0.028 0.005

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: Standard errors clustered at the census tract. Columns (1) and (2) regress the log appraised value
on sinking on the property and the cumulative change in relative altitude (Column (1)) and the standard
deviation of sinking within the 500m grid cell (Column (2)). Both columns include property, age, and zone
by year of appraisal fixed effects and time trends by borough, number of bedrooms, and type, and exclude
properties with only one appraisal. Columns (3) through (6) regress an indicator for the household reporting
that their neighborhood has issues with the infrastructure problem in the header on total sinking on the
property since it was built and the cumulative relative altitude change since 2007 in Columns (3) and (5),
and the average standard deviation of sinking from 2007-2020 in Columns (4) and (6). Columns (3) through
(6) include strata, borough, education, respondent age, and gender fixed effects, and regressions are weighted
by sample weights.
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Table 8: Impact of sinking on the probability of re-development

(1) (2) (3)

Sinking on the property (m) 0.0267*** 0.0053* 0.0052*

(0.0040) (0.0030) (0.0029)

Relative altitude (m) -0.0240* -0.0181 -0.0182

(0.0133) (0.0124) (0.0124)

log Price -0.0005

(0.0017)

N 309,596 308,132 307,859

Mean Y 0.0091 0.0089 0.0089

Adj. R2 0.069 0.079 0.079

Census tract FEs X X X

Borough x year FEs X X X

Hedonic controls X X

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: The outcome in all regressions is an indicator for the appraisal being associated with a
new development within 5 years of the appraisal. Specifications with hedonic controls include
fixed effects for the type (apartment, single family, etc.) and amenity classification (economical to
luxury), square footage, number of bedrooms, number of bathrooms, number of parking spaces,
age, plot size, built area, and number of floors. Standard errors clustered at the census tract.

Table 9: Impact of sinking on the probability of new development

Pr. development on the Pixel

(1) (2) (3)

Pixel-level sinking (m) 0.00049*** 0.00067* 0.00041***

(0.00016) (0.00036) (0.00015)

Observations 1,500,497 1,500,497 1,500,497

Mean Y 0.005 0.005 0.005

Mean sinking (m) 0.34 0.34 0.34

Pixel FEs X X X

Year FEs X

Zone x Year FEs X

Borough x year FEs X

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: The outcome in all regressions is an indicator for construction beginning on a new
development in the pixel-year. All specification include pixel fixed effects; (1) includes year fixed
effects, (2) includes year by seismic zone fixed effects, and (3) includes borough by year fixed
effects. Standard errors clustered at the census tract.
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Table 10: Supply elasticity estimates

First stage IV Probit Probit,
AME

Probit,
Flexible CF

Probit,
no CF

(1) (2) (3) (4) (5) (6)

Relative altitude change (m) -0.006

[-0.009, -0.002]

log Price 0.403 5.935 0.273 5.952 0.010

[-0.074, 1.398] [0.101, 24.653] [0.002, 1.106] [0.217, 24.719] [-0.148, 0.215]

Property-level sinking (m) -0.121 0.091 1.654 0.076 1.660 0.895

[-0.164, -0.084] [0.026, 0.255] [0.705, 4.867] [0.031, 0.228] [0.720, 4.887] [0.347, 1.805]

u -5.927 -0.272 -6.068

[-24.660, 0.016] [-1.107, 0.000] [-24.949, -0.304]

u2 -0.237

[-0.818, 0.122]

u3 0.295

[-0.046, 0.608]

Share redeveloped 0.027 0.027 0.027 0.027 0.027 0.027

Observations 101,888 101,888 101,888 101,888 101,888 101,888

Tract FEs X X X X X X

Year FEs X X X X X X

Calendar month FEs X X X X X X

Type FEs X X X X X X

Amenity FEs X X X X X X

Bed, bath, age controls X X X X X X

F stat (KPR) 10.563

Estimated elasticity 0.403 0.281 0.273 0.281 0.001

95% CI [-0.074, 1.398] [0.005, 0.873] [0.002, 1.106] [0.014, 0.873] [-0.017, 0.019]

Notes: The outcome in Column (1) is the log transaction price; the outcome in Columns (2)-(6) is an indicator
for the plot being redeveloped. Brackets under each estimate report the 95% confidence interval. Standard
errors clustered at the census tract in the first stage and linear probability model; confidence intervals
calculated from bootstrapped sampling of census tracts in Columns (3)-(6), with 1,000 bootstrap samples
drawn of 235 census tracts sampled in each. All estimates control for age, age2, the number of bedrooms, the
number of bathrooms, and fixed effects for the census tract, year, month of transaction, type (apartment,
single family, etc.), and amenity classification (economy, semi-luxury, or luxury). Average marginal effects
calculated over the sample with each observation assigned the relevant estimated fixed effects.
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Table 11: Pigouvian tax on groundwater pumping and water consumption, rates

Very low income Low income Middle income Unsubsidized

Share of HHs 0.243 0.42 0.113 0.225

Avg. consumption (m3) 23.35 29.427 27.294 35.098

Avg. marginal rate $0.303 $0.574 $1.167 $1.691
Average bi-monthly bill $4.175 $13.154 $22.106 $59.34
Tax as % of marginal rate 292.81% 154.44% 75.98% 52.44%

Tax as % of bill 297.56% 119.03% 65.69% 31.47%

Notes: Rates from the 2024 schedule. Average consumption estimated from city block averages reported in
2019. All monetary values converted to 2018 USD using a 19 MXN/USD exchange rate, and deflating 2024
prices to 2018. “Marginal rates” refer to the marginal price of water at average city block consumption per
household.

Table 12: Cost-benefit analysis

Wastewater injection Repairing leaks New water sources Wastewater recycling

Total water saved (hm3/year) 252.29 94.61 243.46 1,261.44

NPV of costs, annualized $ 51.09 $ 29.65 $ 174.33 $79,082.32
Benefit-cost ratio 6.20 7.33 4.13 0.04

Notes: Monetary values expressed in millions of 2018 USD. 6% discounting rate used.
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B Figures
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Figure 1: Structures affected by subsidence in Mexico City

(a) Building distorted by uneven sinking in
downtown Mexico City

(b) Church sinking to
one side in Texcoco,
Mexico City metro area

(c) Building whose foundation is exposed on
one side as pavement sinks unevenly around
it, downtown Mexico City (d) Sinkhole, Coyoacán

(e) Wall tilting into sidewalk, Venustiano
Carranza

Notes: Subfigure (a) is from the New York Times, article “Mexico City, Parched and Sinking, Faces
a Water Crisis”. Sub figure (b) is author’s photograph from Texcoco, a city in the greater Mexico
City metropolitan area located on the former lake bed. Subfigure (c) is author’s photograph from
the historic center of Mexico City. Subfigures (d) and (e) are from the Mexico City government’s
Subsidence Atlas (Secretaŕıa de Gestión Integral de Riesgos y Protección Civil, 2018).
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Figure 2: Subsidence rates in Mexico City

(a) Sinking rate in 2010 (b) Change in rate, 2010 to 2020

(c) Relative altitude change (d) Standard deviation of sinking

Notes: Map extent limited to grid cells with positive population within the state of Mexico City.
Cells in grey do not have data in 2010. Panel (a) plots the sinking rate at the pixel level in
2010. Panel (b) plots the change in the sinking rate from 2010 to 2020. Panel (c) plots the total
cumulative relative elevation change from 2007 to 2020. Panel (d) plots the average standard
deviation of sinking, which averages the cross sectional standard deviation across years.
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Figure 3: Sinking against attention and surprise
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(b) Surprised by severity of sinking

Notes: Each plot calculates the average outcome within 16 quantile bins of expected 5-year plot-
level sinking, estimated as 5sj where sj is the average sinking rate on the plot. Panel (a) plots the
average of an indicator for the respondent reporting they considered subsidence when deciding
where to live. Panel (b) plots the average of an indicator for the respondent reporting that the
issues related to subsidence have been more severe than they anticipated. Linear line of best fit
plotted in Panel (a); non-linear relationship in (b) approximated with Loess regression.
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Figure 4: Beliefs about past sinking versus satellite measures
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Notes: Each point plots the respondent’s report of how much their plot has sunk in the last five
years against the satellite measure of how much that plot sunk over the same period. The dotted
line plots the 45◦ line. The thick dashed line with prediction interval represents the line of best
fit from a linear regression.
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Figure 5: Market clearing

(d) The rental market after sinking
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Figure 6: Appraisals and transaction prices

Notes: Each point represents an appraisal-transaction price pair from the mortgage data; a random
sample of 50,000 pairs was drawn from the full sample of 5,645,851. The dashed line is the 45◦

line. The slope and adjusted R2 reported are from a regression of the transaction price on the
appraised value with no intercept.
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Figure 7: Residualized prices and sinking

(a) Residualized subsidence (b) Residualized log appraisal values

Notes: Each point plots the residual from a regression of the outcome on transaction, age, year
of appraisal by zone fixed effects and linear trends by the number of bedrooms and borough.
Residuals censored at the 1% and 99% percentiles and pseudo-log transformation applied to
color scheme for visual clarity. Points jittered by a factor of 0.002 (maximum displacement of
approximately 222 meters) to facilitate visualization of multiple points per property.
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Figure 8: Pre-trends test: Subsidence and market composition

N. floors

Bedrooms

Bathrooms

Half baths

Parking spaces

Built area

Plot area

Hedonic index

−0.10 −0.05 0.00 0.05 0.10
Estimate and 95% CI − standard deviations

Notes: Plots coefficients and 95% confidence intervals for separate regressions of the outcome on
sinking to date on the property in meters. The hedonic index is the simple average of the Z-score
of plot area, built area, parking spaces, half baths, bathrooms and bedrooms. All outcomes are
standardized by the mean and standard deviation of the variable. Each regression mimics the
main specification as closely as possible, replacing the outcome with the attribute listed in the y
axis on plot-level sinking, 500 meter grid fixed effects, vintage by year of sale fixed effects, and
linear trends by borough and seismic zone. Standard errors clustered at the census tract.

Figure 9: How can you know if a home will have issues with subsidence in the future?

Ex−ante
available

information

Ex−post
observation

0.0 0.1 0.2 0.3 0.4 0.5

Risk zone

Construction quality

News/ask around

Ask an expert

See effects in home

Can't know in advance

Neighborhood observation

Share

High sinking Low sinking

(a) Distribution of responses

Can't know
in advance

Ex−ante
factors

Ex−post
observation

0.0 0.2 0.4 0.6
Share

High sinking Low sinking

(b) Ex-ante vs ex-post ways of knowing

Notes: Each bar plots the average of an indicator for the respondent mentioning a way of knowing
that a house will have future issues with sinking in that category, weighted by the population
weights and separated by the high-sinking and low-sinking strata. Black bars represent the 95%
confidence interval around the mean. The right figure groups ex-ante and ex-post mechanisms
and reports the mean for each.
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Figure 10: Welfare benefits of counterfactual policies

Notes: Each bar height represents the change in surplus by market participand for the
counterfactual minus a baseline equilibrium, expressed in terms of billions of 2018 US dollars.
“Stop future sinking” sets E(sjτ ) = 0 ∀j, τ > t and compares to the observed equilibrium. “Full
information” sets θ = 1 and keeps observed sinking, relative to the observed equilibrium. “No
sinking | full information” shows the benefits of a counterfactual with θ = 1 and E(sjτ ) = 0∀j, τ > t
relative to a counterfactual with observed sinking but θ = 1. Error bars mark the 5th to the 95th
percentile range of estimates from 1,000 samples γ and η from normal distributions centered
around their point estimates with standard deviation given by the standard error of the estimate.
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C Table Appendix

Table A1: Appraised values and transaction prices

Price Price % deviation % deviation

Intercept 0.049*** 0.041***

(0.008) (0.005)

Appraised value 0.967*** 0.958***

(0.004) (0.003)

Sinking intensity (m) 0.006 0.007

(0.007) (0.007)

Observations 5,645,851 5,645,851 5,645,851 5,645,851

Mean Y 2.048 2.048 0.044 0.044

Adj. R2 0.528 0.528 0 0.007

Loan controls X

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: The outcome in Columns (1) and (2) is the transaction price in millions of pesos. The
explanatory variable in (1) and (2) is the appraised value in millions of pesos. The outcome
in Column (3) is the percent deviation in appraised values from transaction values, |ptransac −
pappraised|/ptransac. The explanatory variable in Column (3) is average total sinking in the locality
from 2007 to 2020. Standard errors in all specifications are clustered at the locality.
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Table A2: Repeat sales sample compared to the full appraisal sample

(1) (2) (3) Mean Y

Single-family home -0.166*** -0.151*** -0.067*** 0.196

(0.007) (0.007) (0.004)

Apartment 0.171*** 0.155*** 0.070*** 0.794

(0.007) (0.007) (0.004)

Empty lot -0.001 -0.000 0.001 0.004

(0.000) (0.000) (0.000)

Communal property -0.002*** -0.003*** -0.002*** 0.004

(0.001) (0.001) (0.000)

Medium class -0.005 -0.014 -0.015** 0.622

(0.013) (0.011) (0.007)

Plus class -0.047*** -0.017*** -0.000 0.171

(0.009) (0.006) (0.003)

Luxury class -0.020*** -0.013*** -0.002 0.035

(0.002) (0.002) (0.001)

Age -5.518*** -5.196*** -2.191*** 12.931

(0.283) (0.264) (0.164)

Plot size (sq. m) 122.636 150.028*** 40.917 523.763

(76.546) (47.630) (32.436)

Construction size (sq. m) -35.146*** -28.396*** -12.113*** 97.059

(1.344) (1.353) (0.645)

N. floors -0.237*** -0.199*** -0.205*** 1.832

(0.033) (0.034) (0.043)

N. bedrooms -0.241*** -0.212*** -0.096*** 2.353

(0.012) (0.011) (0.008)

N. bathrooms -0.309*** -0.219*** -0.077*** 1.644

(0.019) (0.015) (0.008)

N. parking -0.210*** -0.136*** -0.041*** 1.129

(0.021) (0.018) (0.010)

Price (millions MXN) -0.766*** -0.555*** -0.171*** 2.224

(0.049) (0.044) (0.015)

Sinking to date (m) -0.004 -0.038*** -0.014*** 0.181

(0.011) (0.009) (0.004)

Rel. altitude (m) 0.193 0.130 -0.048 0.338

(0.180) (0.155) (0.071)

N. observations 322538 322538 322538 322538

Borough x Year FEs X X

Census tract FEs X

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: Each row is the coefficient of a separate regression where the outcome is listed in the row
label and the explanatory variable is an indicator for being included in the repeat sales sample.
All regressions include an intercept and cluster standard errors at the census tract level. The last
column reports the overall mean of the outcome in each row.
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Table A3: Survey evidence for information frictions: Limiting to respondents who have
moved in the last 10 years

Suprised by severity Ex-post factors used Ex-ante factors used

Sinking in last 5 years (m) 0.213*** 1.863*** -1.144***

(0.000) (0.000) (0.000)

N 61 61 61

Mean Y (low sinking) 0.262 0.45 0.368

Strata FEs X X X

Borough FEs X X X

Education FEs X X X

Respondent age FEs X X X

Respondent gender FEs X X X

* p <0.1, ** p <0.05, *** p <0.01

Notes: Data limited to respondents who report moving to their current unit within the last 10
years. Outcomes in order of appearance are an indicator for using any ex-post factors (seeing
effects in the home or neighborhoods) to infer future probability of having issues due to sinking,
an indicator for using any ex-ante factors (asking an expert, asking around, the news, the risk
zone, examining construction quality), and an indicator for reporting that sinking has been more
severe than they anticipated. “Sinking in last 5 years (m)” is the total subsidence on the property
over the last 5 years. All specifications include survey strata, borough, respondent age, respondent
gender, and respondent educational attainment fixed effects. All regressions weighted by sampling
weights. Standard errors clustered at the census tract.

73



Table A4: Subsidence and sorting on risk, discounting preferences

Discounting Risk aversion

(1) (2) (3) (4)

Sinking in last 5 years (m) -0.208 0.163

(0.450) (0.309)

Relative altitude change in last 5 years (m) 1.504 1.253*

(0.944) (0.682)

N 396 396 362 362

Mean Y (low sinking) 0.671 0.671 0.624 0.624

Strata FEs X X X X

Borough FEs X X X X

Education FEs X X X X

Respondent age FEs X X X X

Respondent gender FEs X X X X

* p <0.1, ** p <0.05, *** p <0.01

Notes: Outcomes in order of appearance are the implied discount rate and risk aversion coefficient
measured by Falk instruments. Respondents had a random 50% change on being asked the
discounting or risk aversion questions, with 400 being surveyed on each each. “Sinking in last
5 years (m)” is the total subsidence on the property over the last 5 years. All specifications
include survey strata, borough, respondent age, respondent gender, and respondent educational
attainment fixed effects. All regressions weighted by sampling weights. Standard errors clustered
at the census tract.

Table A5: Impact of plot sinking on appraised useful life remaining

(1) (2) (3) (4)

Property-level sinking (m) -3.23374*** -4.83280*** -4.10111** -4.40771***

(1.14822) (1.48152) (1.66468) (1.64326)

Observations 129,475 129,475 129,475 129,475

ATE: plot sinking -48.81% -72.95% -61.91% -66.54%

Mean sinking between observ. (m) 0.151 0.151 0.151 0.151

Property FEs X X X X

Year FEs X X X X

Age FEs X X X X

Zone x year FEs X X X

Borough x age trends X X

N. bedrooms x age trends X

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: The outcome in all regressions is the appraised useful years of life remaining. All estimates
include property, age, and year of appraisal fixed effects. Estimation limited to properties with
more than one appraisal. Standard errors clustered at the census tract. The Average Treatment
Effect (ATE) is calculated by multiplying the reported coefficient by the average sinking between
observations in meters.
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Table A6: Impact of plot sinking on maintenance expenditures

(1) (2) (3) (4)

Property-level sinking (m) 0.016 0.023** 0.022** 0.023**
(0.012) (0.010) (0.010) (0.010)

log HH income 0.062*** 0.063*** 0.063*** 0.062***
(0.012) (0.012) (0.012) (0.012)

N 5,607 5,607 5,607 5,607
Mean dept. variable 0.117 0.117 0.117 0.117
Age bin FEs X X X X
Type x Borough FEs X X X X
N. room FEs X X X X
N. bedroom FEs X X X X
Year FEs X
Year x Borough FEs X X X
Locality FEs X X
N. bedroom x age trends X

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: The outcome in all regressions is an indicator for incurring any maintenance spending.
Standard errors clustered at the locality. All regressions include controls for log household income
and an indicator for having a solid roof.

Table A7: Impact of sinking is stable across specifications

(1) (2) (3) (4)

Property-level sinking (m) -0.099*** -0.095*** -0.061*** -0.060***

(0.014) (0.015) (0.020) (0.020)

Observations 129,431 129,431 129,431 129,427

ATE: plot sinking -1.49% -1.44% -0.92% -0.92%

Mean sinking between observ. (m) 0.151 0.151 0.151 0.151

Property FEs X X X X

Year FEs X X X X

Age FEs X X X X

Zone x year FEs X X X

Borough x age trends X X

N. bedrooms x age trends X

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: Standard errors clustered at the census tract. The outcome in all columns is the log
appraised value. All estimates include property, age, and year fixed effects. Estimation limited to
properties with more than one appraisal. The Average Treatment Effect (ATE) is calculated by
multiplying the reported coefficient by the average subsidence between observations in meters.
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Table A8: Impact of sinking on neighboring pixels on appraisal values

(1) (2) (3) (4)

Property-level sinking (m) -0.08965*** -0.09683*** -0.06815*** -0.06175***

(0.01582) (0.01887) (0.01977) (0.02008)

Sinking on neighboring properties (m) 0.00541 -0.00221 0.00052 0.00139

(0.00364) (0.00502) (0.00482) (0.00482)

Observations 16,438 16,438 16,437 16,437

Mean sinking between observ. (m) 0.034 0.034 0.034 0.034

Start year x end year FEs X

Zone x start year x end year FEs X X X

Borough x age trends X X

N. bedrooms x age trends X

Binned floor space x age trends X

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: Standard errors clustered at the census tract. The outcome in every column is the change in
log appraised value. All estimates difference between subsequent appraisals in the same property.
“Start year x End year FEs” are fixed effects by year of appraisal by year of last appraisal, which
control for the change in age between appraisals.

Table A9: Repeat appraisals results: Pre-2017 earthquake

(1) (2) (3) (4)

Property-level sinking (m) -0.115*** -0.113*** -0.084*** -0.083**

(0.027) (0.02847) (0.032) (0.032)

Observations 78,453 78,453 78,453 78,453

ATE: plot sinking -1.28% -1.26% -0.94% -0.92%

Mean sinking between observ. (m) 0.112 0.112 0.112 0.112

Property FEs X X X X

Year FEs X X X X

Age FEs X X X X

Zone x year FEs X X X

Borough x age trends X X

N. bedrooms x age trends X

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: Standard errors clustered at the census tract. The outcome in every column is the log
appraised value. All estimates include property, age, and year fixed effects. Estimation limited
to properties with more than one appraisal. The Average Treatment Effect (ATE) is calculated
by multiplying the reported coefficient by the average subsidence between observations in meters.
Limited to appraisals for transactions before 2017.
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Table A10: Repeat appraisals, Excluding localities with large differences between appraisals
and transaction prices

(1) (2) (3) (4)

Property-level sinking (m) -0.099*** -0.095*** -0.061*** -0.061***

(0.014) (0.015) (0.020) (0.020)

Observations 129,228 129,228 129,228 129,224

ATE: plot sinking -1.49% -1.44% -0.92% -0.92%

Mean sinking between observ. (m) 0.151 0.151 0.151 0.151

Property FEs X X X X

Year FEs X X X X

Age FEs X X X X

Zone x year FEs X X X

Borough x age trends X X

N. bedrooms x age trends X

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: Estimation limited to localities where the median difference between appraisal values and
transaction prices is greater than 1%. The outcome in every column is the log appraised value. All
estimates include property, age, and year fixed effects. Estimation limited to properties with more
than one appraisal. Standard errors clustered at the census tract. The Average Treatment Effect
(ATE) is calculated by multiplying the reported coefficient by the average subsidence between
observations in meters.

Table A11: Significance is robust to using Conley standard errors

(1) (2) (3) (4)

Property-level sinking (m) -0.099*** -0.095*** -0.061*** -0.060***

(0.020) (0.020) (0.021) (0.022)

Observations 129,431 129,431 129,431 129,427

ATE: plot sinking -1.49% -1.44% -0.92% -0.92%

Mean sinking between observ. (m) 0.151 0.151 0.151 0.151

Property FEs X X X X

Year FEs X X X X

Age FEs X X X X

Zone x year FEs X X X

Borough x age trends X X

N. bedrooms x age trends X

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: Standard errors calculated using 2-kilometer radius for pooled Conley standard error
calculation. The outcome in all columns is the log appraised value. All estimates include property,
age, and year fixed effects. Estimation limited to properties with more than one appraisal. The
Average Treatment Effect (ATE) is calculated by multiplying the reported coefficient by the
average subsidence between observations in meters.
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Table A12: Interest rates for mortgages are uncorrelated with tract-level sinking

(1) (2)

Intercept 10.135***

(0.037)

Sinking intensity (m) 0.080 0.005

(0.047) (0.031)

Observations 5,645,851 5,645,851

Mean Y 10.171 10.171

Adj. R2 0.001 0.217

Loan controls X

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: Regression of the interest rate (in percentage points) charged on a mortgage on the total
sinking in meters on the census tract from 2007 to 2020. Column (2) includes controls for the
appraised value of the home, the borrower’s income and the down payment as a share of the value,
as well as bank and month fixed effects. Standard errors clustered at the census tract.
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Table A13: Effect of sinking on the height of new developments

(1) (2) (3) (4)

Panel A

Sinking pre-construction (m) 0.128 0.443 0.121 0.115

(0.348) (0.333) (0.339) (0.360)

Observations 13,628 13,628 13,608 13,608

ATE: plot sinking 2.72% 9.43% 2.58% 2.45%

Mean sinking (m) 0.213 0.213 0.213 0.213

500m grid FEs X X X X

Year started x Year finished FEs X

Year started x Zone x Year finished FEs X X X

Hedonic controls X X

Linear trends by hedonic char. X

Panel B

Sinking pre-construction (m) 0.430 0.535 0.061 0.049

(0.380) (0.373) (0.365) (0.380)

Relative elevation change (m) -11.552* -4.479 1.357 1.254

(6.159) (4.458) (4.117) (4.050)

NPV future sinking (m) 0.019 0.004 0.046 0.047

(0.042) (0.040) (0.034) (0.034)

Observations 13,628 13,628 13,608 13,608

ATE: plot sinking 9.15% 11.38% 1.29% 1.05%

ATE: Relative altitude change -14.74% -5.71% 1.73% 1.6%

ATE: Future sinking 16.87% 3.27% 40.7% 41.82%

Mean sinking (m) 0.213 0.213 0.213 0.213

Mean relative altitude change (m) 0.013 0.013 0.013 0.013

Mean NPV future sinking (m) 8.943 8.943 8.942 8.942

500m grid FEs X X X X

Year started x Year finished FEs X

Year started x Zone x Year finished FEs X X X

Hedonic controls X X

Linear trends by hedonic char. X

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: The outcome in all specifications is the height (number of floors) of the development.
Standard errors clustered at the census tract. The Average Treatment Effect (ATE) is calculated
by multiplying the reported coefficient by the average subsidence between observations in meters.

79



T
ab

le
A
14
:
E
ff
ec
t
of

si
n
k
in
g
on

th
e
am

en
it
ie
s
of

n
ew

d
ev
el
op

m
en
ts

A
m
en

it
y
in
d
ex

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0
)

S
in
k
in
g
p
re
-c
on

st
ru
ct
io
n
(m

)
0
.0
5
7

0
.0
2
9

0
.0
8
4

0
.0
5
1

0
.0
8
4

0
.0
4
6

(0
.1
0
8
)

(0
.1
1
0
)

(0
.1
0
9
)

(0
.1
1
1
)

(0
.1
1
0
)

(0
.1
1
2
)

R
el
at
iv
e
el
ev
at
io
n
ch
an

ge
(m

)
-0
.9
7
9

-0
.9
0
9

-0
.9
7
2

-0
.8
7
0

-0
.6
2
1

-0
.7
4
5

-0
.6
0
8

-0
.7
1
4

(0
.7
5
1
)

(0
.7
3
9
)

(0
.7
6
4
)

(0
.7
5
9
)

(0
.7
3
6
)

(0
.7
3
8
)

(0
.7
4
4
)

(0
.7
5
5
)

N
P
V

fu
tu
re

si
n
k
in
g
(m

)
0
.0
0
0

0
.0
0
3

0
.0
0
1

0
.0
0
3

(0
.0
0
9
)

(0
.0
0
9
)

(0
.0
0
9
)

(0
.0
0
9
)

O
b
se
rv
at
io
n
s

1
3
,6
1
0

1
3
,6
1
0

1
3
,6
1
0

1
3
,6
1
0

1
3
,6
1
0

1
3
,6
1
0

1
3
,6
1
6

1
3
,6
1
6

1
3
,6
1
6

1
3
,6
1
6

A
T
E
:
p
lo
t
si
n
k
in
g

1
.2
2
%

0
.6
1
%

1
.8
%

1
.0
8
%

1
.7
9
%

0
.9
8
%

A
T
E
:
R
el
at
iv
e
al
ti
tu
d
e
ch
an

ge
-1
.2
5
%

-1
.1
6
%

-1
.2
4
%

-1
.1
1
%

-0
.7
9
%

-0
.9
5
%

-0
.7
8
%

-0
.9
1
%

A
T
E
:
F
u
tu
re

si
n
k
in
g

0
.3
6
%

2
.2
9
%

1
.1
4
%

2
.9
1
%

M
ea
n
si
n
k
in
g
(m

)
0
.2
1
3

0
.2
1
3

0
.2
1
3

0
.2
1
3

0
.2
1
3

0
.2
1
3

M
ea
n
re
la
ti
v
e
al
ti
tu
d
e
ch
an

ge
(m

)
0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

M
ea
n
N
P
V

fu
tu
re

si
n
k
in
g
(m

)
8
.9
4
1

8
.9
4
1

8
.9
4

8
.9
4

50
0m

gr
id

F
E
s

X
X

X
X

X
X

X
X

X
X

Y
ea
r
st
ar
te
d
x
Y
ea
r
fi
n
is
h
ed

F
E
s

X
X

X
X

X

Y
ea
r
st
ar
te
d
x
Z
on

e
x
Y
ea
r
fi
n
is
h
ed

F
E
s

X
X

X
X

X

*
p
<

0.
1,

**
p
<

0.
05
,
**
*
p
<

0.
01

N
ot
es
:
T
h
e
ou

tc
om

e
in

al
l
sp
ec
ifi
ca
ti
on

s
is
th
e
a
m
en
it
y
sc
o
re

o
f
th
e
d
ev
el
o
p
m
en
t,
w
h
ic
h
ta
ke
s
th
e
si
m
p
le

av
er
a
g
e
o
f
st
a
n
d
a
rd
iz
ed

va
lu
es

fo
r
th
e
fl
o
or

sp
ac
e,

co
n
st
ru
ct
io
n
sp
ac
e,

n
u
m
b
er

o
f
b
ed
ro
o
m
s,

n
u
m
b
er

o
f
b
a
th
ro
o
m
s,

n
u
m
b
er

o
f
p
a
rk
in
g
sp
a
ce
s,

a
n
d
in
d
ic
a
to
rs

fo
r
th
e

p
re
se
n
ce

of
a
gy

m
,
se
cu
ri
ty

d
es
k
,
p
o
ol
,
a
n
d
g
re
en

sp
a
ce
.
S
ta
n
d
a
rd

er
ro
rs

cl
u
st
er
ed

a
t
th
e
ce
n
su
s
tr
a
ct
.
T
h
e
A
ve
ra
g
e
T
re
a
tm

en
t
E
ff
ec
t

(A
T
E
)
is

ca
lc
u
la
te
d
b
y
m
u
lt
ip
ly
in
g
th
e
re
p
o
rt
ed

co
effi

ci
en
t
b
y
th
e
av
er
a
g
e
su
b
si
d
en
ce

b
et
w
ee
n
o
b
se
rv
a
ti
o
n
s
in

m
et
er
s.

80



Table A15: Parameters needed for welfare analysis

Value Interpretation How estimated/calibrated

γ 0.06 Disutility from
subsidence

Repeat transactions estimation

θ 0.08 Extent of
information
frictions

Value of future sinking in new home price

η 0.28 Supply elasticity Redevelopment estimation

ρ 1/1.06 Discount factor Chosen to reflect a 6% social discount rate

µ 1.111 Mean of log cost
shocks

Calibrated from distribution of structural
residual in data

σ 0.413 Standard
deviation of
log cost shocks

Calibrated from distribution of structural
residual in data

ξ̃Sjt (vector) log cost shocks Exactly matched to data using
equilibrium conditions

ejt (vector) Unobserved
demand shifters

Exactly matched to data using
equilibrium conditions

D 2.2 Demolition cost Calibrated to match mean redevelopment
probability of 2.7%
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D Figure Appendix

Figure B1: Subsidence rates from the geophysics literature

120°W  60°W   0°  60°E 120°E

Mean sinking
rate (m/year) 0 0.01 0.03 0.06 0.39

Notes: Figure adapted from data reported in Bagheri-Gavkosh et al. (2021), who survey
geophysical studies of land subsidence published before 2021. The median study included in
the survey calculated subsidence rates starting in 2001 and ending in 2010. Points are colored by
the mean subsidence rate estimated in the study when available, and the maximum rate when
that is the only measure reported.

Figure B2: Timeline of satellite data measures

Notes: Chaussard et al. (2021) provided data from 2014-2020. Original interferometry performed
from 2008-2011 using ALOS-1 data, and 2021-2025 using Sentinel-1 data.
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Figure B3: Distribution of deviations of appraised and transaction values

Share exactly zero: 0.732
75th percentile: 0.418%
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Notes: Height of the bars represents the number of appraisals with the given percentage difference
between appraised and transaction values, measured as 100× (pappr − ptransac)/ptransac. Values
winzorized at the 99th percentile for visual clarity. Exact zero values colored in blue.
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Figure B4: Evaluating respondent beliefs about the geography of sinking

Share of high risk named Share of those named that are high risk
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Notes: Each bar plots the number of responses that scored a given “grade” according to two
metrics. The right panel scores the share of the seven boroughs considered high sinking risk that
the respondent named in response to the question “Which boroughs in Mexico City have issues
with subsidence?”. The left panel scores the share of named boroughs that are in the severn high
risk boroughs. Respondents who could not name any boroughs in response to the question are
marked in yellow and are assigned a score of zero.
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Figure B5: Capitalization of future sinking by borough
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Notes: Each point with error bar represents the regression coefficient and 95% confidence interval
of the interaction of a borough fixed effect with the net present value of future sinking specified
using an AR(1) process and 6% discount rate. Estimation is limited to new builds. All estimates
include fixed effects by 500m-grid cell, seismic zone by year, amenity class, number of bathrooms,
number of floors, and number of parking spaces. Standard errors clustered at the grid cell. The
blue line fits a linear regression through the point estimates.

Figure B6: Monte Carlo estimates simulating measurement error in subsidence

(a) Distribution of Estimates of γ (b) Distribution of p-values

Notes: Each plot shows the frequency of estimates of γ (Figure (a)) and its associated p-value
(Figure (b)) given 1,000 draws of data in which each models total subsidence as S̃jt = Sjt +∑Agejt

i=0 eij , where eij is drawn from a normal distribution with mean zero and standard deviation
of 0.01 meters, simulating a 10 millimeter per year white noise measurement error associated with
the measured sinking rate. Each point estimate is from a regression of log prices on S̃jt and
property, age, and zone by year of appraisal fixed effects and time trends by borough, number
of bedrooms, and type. Estimates exclude properties with only one appraisal. Standard errors
clustered at the census tract.
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Figure B7: Pre-trends test

Notes: Points represent mean residualized sinking between transactions for 20 quantile bins of the
residualized change in log price between appraisals. Residualization of both variables is done on
property, age, and year of appraisal by seismic zone fixed effects. Lines represent the line of best fit
through these binned values; grey areas represent 95% prediction intervals. The slopes reported
are from a regression of the sinking between appraisals on the change in log price (lagged or
contemporaneous), residualized as in the plot. P-values calculated using standard errors clustered
at the census tract.

Figure B8: Pre-trends in pixel-level development

Awaiting revision by EconLab.

Notes: Depicts point estimates and 95% confidence intervals from a regression of an indicator for
any development occurring on the pixel on an indicator for being a high-sinking pixel in 2020
(Panel (a)) or a highly-unevenly sinking pixel as measured by the cumulative relative altitude
change (Panel (b)) in different periods. Periods denoted on the horizontal axis are the year relative
to the first year that the pixel achieved a sinking intensity above the cut-off. Relative periods
<10 are grouped into the -10 period. All regressions include pixel and year fixed effects. Point
estimates estimated using Sun and Abraham (2021) staggered event study estimator. Standard
errors clustered at the pixel.
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Figure B9: Price changes in counterfactuals relative to the observed equilibrium

Notes: Each plot shows the density of the percentage change in price in the counterfactual relative
to observed prices. The left figure counterfactual is relative to an alternative where sinking remains
unchanged but there are no information frictions (θ = 1). The right figure counterfactual is relative
to an alternative equilibrium where subsidence is zero.
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Figure B10: Change in density under full information relative to the observed equilibrium

(a) Full information (b) No sinking

Notes: Fill colors per census tract represent the percentage change in the number of units per plot
between (a) a counterfactual calculated with no information frictions and the observed housing
density, and (b) a counterfactual calculated with no future sinking and the observed housing
density.
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E Data Appendix

E.1 Subsidence data

Subsidence calculated from Sentinel-1 measures (2014-2020) at the pixel level ( 90 by 90
meter resolution) using the C-band was directly provided by Chaussard et al. (2021). I
create an annual pixel-level measure of sinking by mimicking their methodology for creating
the average pixel-level analysis reported in their paper by estimating a linear regression of
cumulative vertical deformation on time for each pixel, the slope of which is an estimate of
the sinking in that period. This method is preferred to directly integrating sinking at each
time step, which is sensitive to estimates contaminated by error or low coherence (Chaussard
et al., 2021). In our setting the linear projection helps remove measurement error that may
be related to construction itself, as a change in building height, if detected at all by the
satellite, would be smoothed over by the other measurements.

We create annual, pixel-level measures of subsidence for 2007-2011 using ALOS-1
ascending track L-band SAR acquisitions for the Mexico Valley. We process the raw
Level-1 data using the ISCE full stack processing framework (Interferometric synthetic
aperture radar Scientific Computing Environment) and use MintPy algorithms to correct
for tropospheric distortions and unwrapping errors and produce the final corrected time
series values (Yunjun et al., 2019) and GACOS to do tropospheric corrections (Yu et al.,
2018b,a, 2017). Given the high signal-to-noise ratio in sinking in central Mexico, I do not
filter on coherence to maximize the coverage of the data.

Using the same process, we create annual, pixel-level measures of subsidence for 2021-
2025 using Sentinel-1 ascending track C-band SAR acquisitions for the Mexico Valley. We
process the raw Level-1 data using the ISCE full stack processing framework (Interferometric
synthetic aperture radar Scientific Computing Environment) and use MintPy algorithms to
correct for tropospheric distortions (using GACOS) and unwrapping errors. I do not filter
on coherence.

In order to create a harmonized panel of pixels, I create a regular 100m×100m pixel
overlay that spans the two spatial extents of the ALOS and Sentinel data and take an
intersection-weighted average of the original pixel subsidence rates. From this grid I
interpolate linearly from 2011-2013.

E.1.1 Measurement error

In the direct measures of subsidence produced by SAR interferometry, measurement
error arises from four main sources: (i) errors in the characterization of the exact orbit
location, which is required to properly compare multiple passes; (ii) errors arising from
troposhperic or ionospheric conditions that affect measurement, in particular water vapor;
(iii) unwrapping errors, which occur when “unwrapping” the phase length which is modular
2π, and (iv) temporal decorrelation, where measurements jump in the 2π range due to
irregular backscatter. We discuss the role for these in our measurements and the magnitude
of errors from these sources.

Orbital location errors Errors in characterizing the exact location of the satellite in
space at each pass can result in long wavelength phase ramps which essentially represent a
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level shift in subsidence that is common to every pixel. These are relatively straightforward
to identify in interferograms, and the MintPy algorithm we use to generate the time series
implements a linear “de-ramping” of the time series. That said, before de-ramping, the
accuracy of orbit information depends on the satellite. The Sentinel-1 orbit information, used
in our analysis from 2014-2025, is extremely accurate, and Sentinel’s orbit products have an
accuracy typically below 5cm in 3D in terms of the exact location of the satellite (Peter
et al., 2017). This results in negligible orbit errors in the resulting interferometry process.
As an older satellite, the ALOS-1 satellite achieves an accuracty of around 40 centimeters
in 3D in terms of the satellite’s location in space, so de-ramping is more important for this
satellite product.

Tropospheric and ionospheric errors Changes in tropospheric and ionospheric
conditions can distort interferograms, which manifests as a phase ramp similar to orbital
location errors. We correct for differences in the tropophere by using GACOS hourly
temperature, pressure, and water vapor measurements to adjust measurements using MintPy.
The magnitude of ionospheric distortions is inversely proportional to the band frequency;
in the case of the C-band, which is relatively high frequency, these errors are minimal, on
the order of <5 millimeters. For the lower frequency L-band, the ionosphere plays a mroe
important role, but its importance is highly dependent on context; ionospheric errors are
at their worst during periods of high solar activity, during the day at equitorial and polar
locations. The ALOS-1 satellite has a sun-synchronous orbit, so it’s ascending orbit passed
over Mexico City around 10:30PM local time. The nighttime pass together with the fact
that Mexico City is near mid-latitude ranges at 19◦ latitude means that ionospheric errors
are somewhat mitigated, and our de-ramping also decreases ionospheric delay (Chaussard
et al., 2021).

Unwrapping errors Unwrapping errors result from too large of a phase difference
between passes, and rather than affecting measurements directly it affects the ability to
produce a measurement at all in some places. Unwrapping errors can arise from several
sources; those most relevant to our setting include (i) too fast of ground deformation; and
(ii) steep slopes that mean that measurement is sensitive to the exact line-of-sight of the
satellite. Our area of interest does not have particularly steep slopes, as urbanized Mexico
City is located within a valley. How fast is “too-fast” of deformation depends on the band,
as the phase is wrapped around half the radar’s wavelength. For the Sentinel-1 C-band,
this means that if displacement exceeds 2.8 centimeters between passes, which occur every
6 days, then displacement would not be able to be estimated. Thus, subsidence would need
to exceed a rate of 1.7 meters per year to be undetectable, a rate observed for dramatic
events such sudden, discrete events such as volcanic eruptions or ice sheet collapses, but not
observed in our sample. The L-band measures we use from the ALOS-1 satellite are able to
detect up to 11.8 centimeters between passes, and our average pass frequency is 90 days, so
sinking would have to exceed 47.9 centimeters per year to be undetectable, which is almost
double the maximum rate observed in our data.

Temporal decorrelation The primary source of temporal decorrelation is changes
in the ground surface that cause measurements to behave differently between passes, for
example changes in vegetative density or snow cover. These sources of error are minimized
in urban settings, where concrete provides a time-consistent radar signature. This is
diagnosable using the average coherence in the signal between satellite passes, which when
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limiting to Mexico City in our data is over 0.9 on a scale from 0 to 1 almost everywhere.
Summing up By focusing on an urban setting and using state-of-the-art tools for

conducting interferometry with tropospheric corrections and linear de-ramping, we minimize
the role for measurement error in our analysis. Other studies in urban areas use GPS stations
that provide ground measures at discrete points, and find measurment errors on the order
of less than millimeters per year (see: 1.5mm/year in Beijing (Liu et al., 2020); 9mm/year
in the Antelope Valley, CA (Bawden et al., 2023)). Assuming we achieve similar accuracy
(1.5mm), our measurement error would be an order of magnitude of around 2.1% of the
average sinking rate of 7 centimeters/year.

E.1.2 Does development cause subsidence?

While historic buildings in Mexico City such as the Palace of Fine Arts have been known to
cause sinking because of their own weight, modern construction code requirements seek to
prevent this through soil studies, including underground levels that offset the weight of the
building, and using pylons that “anchor” the building into the ground instead of sitting on
top of the soil.

We test whether development causes subsidence by estimating the following specification:

spt+τ = β1
(
Developmentpt

)
+ θspt−1 + αp + αtg(p) (20)

where spt+τ is the sinking rate on pixel p in period t + τ and 1
(
Developmentpt

)
is an

indicator for a new development occurring in pt. spt−1 is the lagged sinking rate, a necessary
control given that sinking leads to more development. We also control for pixel fixed
effects αp and seismic zone by year fixed effects αg(p)t. To avoid confounding the effect
of multiple developments, we limit estimation to the sample of pixels that had either one or
no developments over the period. Standard errors are clustered at the pixel.

Figure B11 reports β̂ for τ ∈ [1, 5], transformed to be reported as a percent of the average
sinking rate. Most coefficients are statistically insignificant, except for sinking three years
after construction ended. However, the value of the coefficient is economically minor; a
development in t increases the rate of sinking in t + 3 by less than 2%. This is generally
consistent with studies from Mexico City and elsewhere that find that the role of human
development in causing land subsidence is minor (Chaussard et al., 2021; Parsons et al.,
2023). The fact that the coefficients are small and largely insignificant also assuages concerns
that construction impedes measurement of subsidence by masking as positive elevation gain.

E.2 Survey design and implementation

The survey was designed to be representative of Mexico City housing units, with stratification
on two broad zones of high and low sinking from 2007-2020 defined at the borough level.
Within strata, census tracts were sampled with probabilities drawn from the number of
housing units in that tract in the 2020 census; 80 tracts were randomly sampled, and 10
households were surveyed per tract. Seven boroughs were designated as high-risk with
average total sinking above 0.36 meters from 2020-2024. IRB exemption was obtained
through the UC Berkeley Office for the Protection of Human Subjects.
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Figure B11: Impact of development on future sinking rates
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Notes: Plots β̂/s, where s is the average sinking rate over the panel, and 95% confidence
interval from estimating Equation (20) for τ ∈ [1, 5]. Standard errors clustered at the
pixel.

The surveyed homes provide good representation of sinking across the city; Figure B12
reports the distribution of average total sinking and total relative altitude loss from 2008-
2020 for surveyed and non-surveyed tracts. The distributions are very similar, with some
more mass in the surveyed tracts at mid-levels of sinking coming from the distribution of
housing units over space within high-risk boroughs.

Table A16 reports comparisons of our resident and unit outcomes with the 2022
Income and Expenditure Survey (ENIGH). Despite the three-year difference and different
sampling strategy (housing units versus residents), outcomes are broadly comparable though
statistically differentiable between our survey and the ENIGH. Given the sample restriction
on homeowners of any tenure and renters with at least 5 years in the unit, our sample
is 73% homeowners (compare to 60% in the ENIGH). Looking within homeowners in
Table A16, we see that survey respondents are more likely to inhabit single-family homes
and live in self-built homes as compared to commercially built homes. Respondents are
also significantly older on average. These differences likely highlight selection into being
contactable by the survey firm. Reassuringly, our respondents are not meaningfully more
educated on average; a 0.58 difference in educational attainment represents an approximate
difference of 1.5 years of schooling.54

54Middle and high school education in Mexico each last 3 years, so the difference between “Middle school
incomplete” and “Middle school complete” is approximately 1.5 years.
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Figure B12: Distribution of subsidence in surveyed and non-surveyed census tracts
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Table A16: Balance of survey outcomes against the 2022 ENIGH

Full sample Owners only

ENIGH Our survey ENIGH Our survey Diff, full sample Diff, owners sample

Unit characteristics

Single-family home Mean 0.66 0.78 0.70 0.79 0.12*** 0.09***

SD (0.437) (0.412) (0.409) (0.401) (0.019) (0.022)

N 2541 800 1595 581 3341 2176

Apartment Mean 0.31 0.22 0.27 0.21 -0.09*** -0.06***

SD (0.422) (0.412) (0.392) (0.401) (0.019) (0.022)

N 2541 800 1595 581 3341 2176

Age of home Mean 26.82 38.82 30.39 42.28 4.5*** 8.27***

SD (20.285) (22.713) (19.471) (22.387) (0.96) (1.106)

N 2092 800 1471 581 2892 2052

Self-built Mean 0.28 0.63 0.47 0.67 0.16*** 0.2***

SD (0.49) (0.483) (0.49) (0.47) (0.023) (0.025)

N 1597 800 1597 581 2397 2178

Commercially built Mean 0.26 0.22 0.44 0.23 -0.22*** -0.2***

SD (0.465) (0.409) (0.465) (0.42) (0.021) (0.023)

N 1597 800 1597 581 2397 2178

Respondent characteristics

Female Mean 0.54 0.57 0.54 0.56 0.04*** 0.02***

SD (0.499) (0.496) (0.499) (0.498) (0.019) (0.022)

N 8421 800 5449 581 9221 6030

Age (respondent) Mean 38.45 52.94 41.63 53.73 14.55*** 12.11***

SD (21.547) (16.762) (22.135) (17.086) (0.671) (0.818)

N 8421 800 5449 581 9221 6030

Education Mean 4.23 6.12 4.44 6.24 0.71*** 0.58***

SD (3.541) (3.081) (3.563) (3.118) (0.123) (0.148)

N 6505 800 4221 581 7305 4802

Notes: Means and standard deviations are weighed by sample weights to the population. Differences are
conditional on strata fixed effects and use heteroskedasticity-robust standard errors. Stars represent
p-values less than 0.10 (∗), 0.05 (∗∗), and less than 0.01 (∗ ∗ ∗).
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E.3 Appraisal data

E.3.1 Appraised useful life remaining

We investigate whether appraised values for the years of useful life remaining follow
systematic rules that would preclude us from exploiting true variation in the home’s
physical state. If appraisers use fixed rules based on some property characteristic or age to
assess the useful life left, then regressions that include property and year of appraisal by
year of last appraisal fixed effects would control for all possible variation in this variable.

To investigate this, we define the implied duration of the property’s useful life by adding
the age at time of appraisal to the appraised years of useful life remaining. Then, we
investigate the extent to which the modal value of these implied useful lifespans by the
property’s borough, type (basic, medium, luxury amenities), vintage, and year of appraisal
explains the appraised useful lifespan. We find that there are systematic patterns in the
modal appraised useful life, with different boroughs and vintages receiving common appraised
useful lifespans of 65, 70, 75, or 80 years. However, there are also substantial deviations from
these rules of thumb.

Figure B13 plots the difference between the appraised useful lifespan and the rule
of thumb value implied by the property’s location, type, vintage, and year of appraisal.
While differences are centered around zero, there are appraised useful lifespans that differ
substantially from the rule of thumb value. If we define the rule of thumb excluding vintage,
we find that newer homes appear to be built with longer useful lives, a finding consistent
with technological improvements over time that increase the durability of homes.

E.4 Housing developer data

We aggregate the quarterly development panel into a dataset of developments by calculating
averages of characteristics of the modal unit and its asking price that are weighted by the
number of units reported sold in that period. To create a dataset of new units developed,
we expand the data by the number of units sold, assigning to each the modal price and
characteristics reported in that quarter.

E.4.1 Coverage of the new housing market

Across Mexico, the Central Bank reports that the DIME covers about 60% of new homes,
given that developers account for 60% of new unit construction. We compare the units
reported built in the DIME to the number of appraisals per year to get a better idea of
the DIME coverage in Figure B15. Units reported sold by the DIME surpass even the
total number of appraisals in some years, and is consistently around double the number of
appraisals for new builds (blue line). This is likely because the appraisal data is missing
transactions that did not involve a mortgage, a significant share (around 70%). While
conclusions about coverage should be tempered by this fact, we see this as suggestive that
the DIME covers a significant share of new development in Mexico City.
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Figure B13: Deviations of appraised useful lifespan from rule of thumb values
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a 10,000-observation random sample from the data. The rule of thumb is defined as the
modal appraised useful lifespan for properties that are located in the same borough,
built in the same year, appraised in the same year, and are of the same type.

Figure B14: Deviations of appraised useful lifespan from rule of thumb values
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type, but does not control for vintage.
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Figure B15: Total number of newly developed units and appraisals
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F Predictability of subsidence over time and space

As seen in Figure 2, subsidence intensity is very serially correlated over space, with the
fastest rates of sinking concentrated over the historic lake and the surrounding “transition”
zone defined in the construction code. Subsidence is also highly serially correlated; at the
pixel level, the lagged subsidence rate has a correlation of 0.85 with the contemporaneous
subsidence rate.

However, how sinking has evolved over time varies substantially in Mexico City. First,
how sinking rates respond to shocks that affect groundwater levels or geophysical stability
depends on zone. Figure B16 plots subsidence rates over time by broad categories of
the geophysical environment defined in the construction code. While subsidence rates are
consistently high in the lake zone, the more resistant Firm and Transition zones are more
responsive to shocks; each experiences a spike in subsidence rates during the drought of 2011
and the large earthquake of 2017. In particular after the earthquake, rates in the Firm zone
experienced a level shift up in the sinking rate.

Figure B16: Subsidence rates over time

Notes: Lines represent simple averages of subsidence rates by year and seismic zone as
defined by the construction code.

While past sinking is strongly correlated with current sinking (Table A17), it does not
provide much additional predictive power conditional on fine enough geographic information.
Figure B17 compares the RMSE for models with different levels of granularity of spatial
fixed effects that either include or exclude the lagged subsidence rate as a predictor of the
contemporaneous rate. This highlights that starting around the census tract level, lagged
subsidence contains little additional information above this geographic average.
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Figure B17: Predictive models of subsidence rates

Notes: Points plot the RMSE of regressions that include different levels of fixed effects
and autoregressive terms. Points and lines in blue include only the fixed effects
indicated on the horizontal axis, which range from no fixed effects (simple intercept
model) to city block-level fixed effects. Pink points and lines include these same fixed
effects, and additionally the lagged sinking rate.

Table A17: AR(1) predictive models of the subsidence rate

Overall Lake/transition Firm

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Intercept 0.698*** 0.621*** 1.801***

(0.004) (0.006) (0.006)

Lagged sinking rate 0.877*** 0.797*** 0.151*** 0.095*** 0.922*** 0.863*** 0.232*** 0.152*** 0.117*** 0.083 0.023* 0.015***

(0.001) (0.056) (0.012) (0.002) (0.001) (0.031) (0.014) (0.003) (0.002) (0.085) (0.014) (0.003)

Observations 821.716 821.716 821.716 821.716 507.539 507.539 507.539 507.539 314.177 314.177 314.177 314.177

RMSE 3.04 2.97 2.34 2.27 2.86 2.82 2.23 2.15 2.57 2.53 2.45 2.44

R squared 0.74 0.75 0.85 0.86 0.81 0.82 0.89 0.89 0.01 0.04 0.10 0.11

Borough FEs X X X

Census tract FEs X X X

Block FEs X X X

* p <0.1, ** p <0.05, *** p <0.01

Notes: The unit of observation is a city block-year. Standard errors in parentheses assume iid errors.
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G Theory Appendix

G.1 Linearization of expectation terms

First, consider a first-order approximation of g(St+1
iτ ) = exp(γSt+1

iτ ) around St+1
iτ = E(St+1

iτ ):

g(St+1
iτ ) = exp(γE(St+1

iτ )) + γ exp(γE(St+1
iτ ))× (St+1

iτ − E(St+1
iτ )) +R(St+1

iτ )

⇒ E(g(St+1
iτ )) = exp(γE(St+1

iτ )) + E(R(St+1
iτ ))

The remainder term R(St+1
iτ ) will be a function of higher-order moments of size:

γn

n!
(St+1

iτ − Et(S
t+1
iτ ))n

which will be small if the moments of the distribution of sinking grow at a slower rate than
γn

n!
. For instance, note that the second-order approximation would also include the variance:

g(St+1
iτ ) ≈ exp(γE(St+1

iτ )) + γ exp(γE(St+1
iτ ))(St+1

iτ − E(St+1
iτ ))

+
γ2

2
exp(γE(St+1

iτ ))(St+1
iτ − E(St+1

iτ ))2

⇒ E(g(St+1
iτ )) ≈ exp(γE(St+1

iτ )) +
γ2

2
exp(γEt(S

t+1
jτ ))V ar(St+1

iτ )

which is small in the time series of plot-level sinking.
Now we linearize the log terms. Consider a first-order Taylor series approximation of:

f(Et({λ̃ju}),Et({eju}),Et({siu}u)) =

log

(
exp(−λ̃jt + ejt) +

∞∑
τ=t+1

ρτ−t exp(γEt{St+1
iτ } − Et(λ̃jτ ) + Et(ejτ ))

)

= log

(
exp(−λ̃jt + ejt) +

∞∑
τ=t+1

ρτ−t exp(−Et(λ̃jτ ) + Et(ejτ ) +
τ∑

u=t+1

γEt{siu})

)

around Ẽt(siu) = 0, Et(eju) = ejt, and Et(λ̃ju) = λjt ∀u > t:

f({Et(λ̃ju)}, {Et(eju)}, {Et(siu)}) ≈f(λ̃jt, ejt, 0⃗)

+
∞∑

u=t+1

∂f

∂λ̃ju

∣∣∣
λ̃jt,ejt ,⃗0

× (Et(λ̃ju)− λjt)

+
∞∑

u=t+1

∂f

∂eju

∣∣∣
λ̃jt,ejt ,⃗0

× (Et(eju)− ejt)

+
∞∑

u=t+1

∂f

∂Et(siu)

∣∣∣
λ̃jt,ejt ,⃗0

× (Et(siu)− 0)
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Note that:

f(λ̃jt, ejt, 0⃗) = log

(
exp(ejt − λ̃jt)

1− ρ

)
∂f

∂λ̃ju

∣∣∣
λ̃jt,ejt ,⃗0

= −

(
1− ρ

exp(ejt − λ̃jt)

)
ρu−t exp(ejt − λ̃jt) = −(1− ρ)ρu−t

∂f

∂eju

∣∣∣
λ̃jt,ejt ,⃗0

=

(
1− ρ

exp(ejt − λ̃jt)

)
exp(ejt − λ̃jt)ρ

u−t = (1− ρ)ρu−t

∂f

∂Ẽt(sju)

∣∣∣
λ̃jt,ejt ,⃗0

=

(
1− ρ

exp(ejt − λ̃jt)

)
× exp(ejt − λ̃jt)

γρu−t

1− ρ
= γρu−t

Thus:

f({Et(λ̃ju)}, {Et(eju)}, {Ẽt(siu)}) ≈ ejt − λ̃jt − log (1− ρ)

+ (1− ρ)
∞∑

τ=t+1

ρτ−t
(
Et(ejτ )− ejt − (Et(λ̃jτ )− λ̃jt)

)
+ γ

∞∑
τ=t+1

ρτ−tẼt(sjτ )

G.2 Calculating expectations of future sinking

We create two measures of expectations of future sinking. The first assumes that sinking
rates follow an AR(1) process at the plot level, such that:

sit+1 = µi + ϕsit + eit+1 (21)

We estimate the parameters of this function, namely, {µi}i and ϕ, and define the expected
value of the sinking rate in each period as:

Et(sit+τ ) = µi(1− ϕτ−t) + ϕτ−tsit (22)

with the expected value of total sinking in τ being the sum of the expectations of sinking
rates from t+ 1 to τ . Solving for the net present value of these terms from t+ 1 to infinity
gives:

∞∑
τ=t+1

ρτ−tEt(S
t
iτ ) =

ρ

1− ρ
µi +

ρϕ

1− ρϕ
(sit − µi) (23)

For expectations that follow perfect foresight, we use the realized sinking on the plot
from t+1 to 2025, and use a plot-specific estimate of the rate from 2025-on for sinking after
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that date. The expectation term under perfect foresight is:

∞∑
τ=t+1

ρτ−tEt(S
t
iτ ) =

2024∑
τ=t+1

ρτ−tSt
iτ +

ρ2025−t

1− ρ
ŝi (24)

G.3 Welfare calculations

G.3.1 Renters

Per-period surplus per renter in the housing unit market is:

CSi
j = Rj(0) log

(∑
j

exp{− log(Rj(0)) + Zjδ + ej}

)
+ C

We measure the welfare loss to consumers ∆D as the equivalence variation required to
compensate home buyers for the impacts of subsidence relative to the benchmark. Because of
the size of the system, it is too computationally intensive to calculate an equivalent variation
for each consumer, so we find the average equivalent variation as:

∆D
t such that:

1

J

∑
j

CSi
jt =

1

J

∑
j

Rj(0) log

(∑
j

exp{− log(Rj(0) + ∆D
t ) + Zjδ + ejt}

)
(25)

While a building is not redeveloped, rents must adjust so that equilibrium demand on
the plot is equal to the (fixed) supply of housing on the plot, so we can express mean utility
in each period as a function of utility in the period when the building is new (Sjt = 0) with
rental price R∗

j (0).

G.3.2 Property managers

Expected manager surplus is their profits under rational expectations:

Πt =
∑
j

Hjt

(
E(

∞∑
τ=t

ρτ−tRjτ )− pjt

)
(26)

G.3.3 Producer surplus

Per-period producer surplus in the housing unit market is:

PSt({S}j; θ) =E
(
π∗
jt

)
=Pr(exp(ξ̃Sjt)η̃pjt(0)

η+1 − pjtHjt−1D > 0)×
E(exp(ξ̃Sjt)η̃pjt(0)η+1 − pjtHjt−1D| exp(ξ̃Sjt)η̃pjt(0)η+1 − pjtHjt−1D > 0)
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with expectations defined over cost shocks. The firm earns positive profits for:

ξ̃Sjt > − (log(η̃) + (η + 1) log(pjt(0))− log(pjt)− log(Hjt−1)− log(D)) ⇐⇒
ξ̃Sjt > − (log(η̃) + η log(pjt)− γ(1 + η)Sjt − log(Hjt−1)− log(D)) := −π̃jt

⇐⇒ ξ∗jt > exp(−π̃jt), ξ∗jt = exp(ξ̃Sjt)

So the expected value is:

E(π∗
jt) = Pr(ξ∗jt > exp(−π̃jt))

η̃pjt(0)
η+1
∫∞
exp(π̃jt)

ξ∗jtf(ξ
∗
jt)dξ

∗
jt − pjtHjt−1D

Pr(ξ∗jt > exp(−π̃jt))

= η̃pjt(0)
η+1

∫ ∞

exp(−π̃jt)

ξ∗jtf(ξ
∗
jt)dξ

∗
jt − pjtHjt−1DPr

(
ξ∗jt > exp(−π̃)

)
If ξ̃Sjt ∼ N(µ, σ2), then ξ∗jt has a log-normal distribution and the incomplete integral from

above (removing indices for clarity) is:∫ ∞

exp(−π̃)

ξ∗f(ξ∗)dξ∗ =

∫ ∞

exp(π̃)

exp(ξ̃)f(ξ∗)dξ∗

=

∫ ∞

exp(−π̃)

exp(ξ̃)

ξ∗σ
√
2π

exp

(
−(log(ξ∗)− µ)2

2σ2

)
dξ∗

Let ξ̃ = log(ξ∗) ⇒ dξ̃ = 1/ξ∗dξ∗ and ξ∗ = exp(π̃) ⇒ ξ̃ = π̃. Then:∫ ∞

exp(π̃)

ξ∗f(ξ∗)dξ∗ =

∫ ∞

π̃

1

σ
√
2π

exp(ξ̃) exp

(
−(ξ̃ − µ)2

2σ2

)
dξ̃

=

∫ ∞

−π̃

1

σ
√
2π

exp

(
− 1

2σ
(ξ̃2 − 2ξ̃µ+ µ2 − 2σ2ξ̃)

)
dξ̃

=

∫ ∞

−π̃

1

σ
√
2π

exp

(
− 1

2σ2
(ξ̃2 − 2ξ̃(µ+ σ2) + µ2 + 2µσ2 + σ4 − 2µσ2 − σ4)

)
dξ̃

=

∫ ∞

−π̃

1

σ
√
2π

exp

(
−(ξ̃ − (µ+ σ2))2

2σ2
+ µ+ σ2/2

)
dξ̃

= exp(µ+ σ2/2)

∫ ∞

−π̃

1

σ
√
2π

exp

(
−(ξ̃ − (µ+ σ2))2

2σ2

)
dξ̃

= exp(µ+ σ2/2)

(
1− Φ

(
−π̃ − (µ+ σ2)

σ

))
= exp(µ+ σ2/2)Φ

(
µ+ σ2 + π̃

σ

)
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Giving:

E(π∗
jt) = η̃pjt(0)

1+η exp(µ+ σ2/2)Φ

(
µ+ σ2 + π̃jt

σ

)
− pjtHjt−1DΦ

(
µ+ π̃jt

σ

)
(27)

G.4 Propositions about changes in consumer, producer surplus

Consider the counterfactuals defined as follows:

C1 All future expected sinking is zero: NPV Sjt :=
∑∞

τ=t+1 ρ
τ−tEt(sjτ ) = 0 ∀j, t.

C1 Mexico City experiences no sinking ever. That is, NPV Sjt = Sjt = 0 ∀j, t.

C3 Information frictions are resolved: θ → 1.

We evaluate each derivative “in the long run”, where the long-run is long enough that
housing on a plot has a chance to be redeveloped and update to a new equilibrium. In the
long-run, given a demand shock (as all of our counterfactuals represent), the new equilibrium
represents a movement along the supply curve, and we know the elasticity of this supply curve
is η:

∂ log(Hjt)

∂ log(pjt(0))
= η ⇒ ∂ log(Hjt)

∂Xjt

= η
∂ log(pjt(0))

∂Xjt

for some demand shifter Xjt.

G.4.1 Change in the probability of redevelopment

The probability that a plot is developed is:

Pr(Redevjt) = Φ

(
µ+ π̃jt

σ

)
, π̃jt = log(η̃) + η log(pjt(0))− γSjt − log(Hjt)− log(D)

In counterfactual C1:

∂Pr(Redevjt)

∂NPV Sjt

∝ η
∂ log(pjt(0))

∂NPV Sjt

− ∂ log(Hjt)

∂NPV Sjt

= η
∂ log(pjt(0))

∂NPV Sjt

− η
∂ log(pjt(0))

∂NPV Sjt

= 0

In counterfactual C2:

∂Pr(Redevjt)

∂Sjt

∝ ∂Pr(Redevjt)

∂NPV Sjt

∂NPV Sjt

∂Sjt

− γ = −γ > 0

In counterfactual C3:

∂Pr(Redevjt)

∂θ
∝ η

∂ log(pjt(0))

∂θ
− ∂ log(Hjt)

∂θ
= 0
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G.4.2 Change in producer surplus

Expected profits are:

PSjt = η̃pjt(0)
η+1 exp(µ+ σ2/2)Φ

(
µ+ σ2 + π̃jt

σ

)
− exp(γSjt)pjt(0)HjtDΦ

(
µ+ π̃jt

σ

)
Let Ξ(π̃jt) = exp(µ+ σ2/2)Φ

(
µ+σ2+π̃jt

σ

)
in the following, and recall that:

∂Ξ(π̃jt)

∂NPV Sjt

=
∂Ξ(π̃jt)

∂θ
= 0

In counterfactual C1:

∂PSjt

∂NPV Sjt

= Ξ(π̃jt)η̃(η + 1)pjt(0)
η ∂pjt(0)

∂NPV Sjt

− exp(γSjt)DΦ

(
µ+ π̃jt

σ

)(
∂pjt(0)

∂NPV Sjt

Hjt +
∂Hjt

∂NPV Sjt

pjt(0)

)
= Ξ(π̃jt)η̃(η + 1)pjt(0)

η ∂pjt(0)

∂NPV Sjt

− exp(γSjt)DΦ

(
µ+ π̃jt

σ

)(
∂pjt(0)

∂NPV Sjt

Hjt + η
∂pjt(0)

∂NPV Sjt

Hjt

)
=

η + 1

pjt(0)

∂pjt(0)

∂NPV Sjt

Hjt

(
Ξ(π̃jt)η̃pjt(0)

η+1 − pjtHjtDΦ

(
µ+ π̃jt

σ

))
= (η + 1)

∂ log(pjt(0))

∂NPV Sjt

PSjt = (η + 1)γθPSjt ≤ 0

In counterfactual C2:
The change in producer surplus is equal to that of C1, plus the change due to the change
in Sjt:

∂PSjt

∂Sjt

=
∂PSjt

∂NPV Sjt

∂NPV Sjt

∂Sjt︸ ︷︷ ︸
≤0

−γpjtHjtDΦ

(
µ+ π̃jt

σ

)
︸ ︷︷ ︸

>0

−γ

σ

(
η̃pjt(0)

η+1 exp(µ+ σ2/2)ϕ

(
µ+ σ2 + π̃

σ

)
− pjtHjtDϕ

(
µ+ π̃

σ

))
︸ ︷︷ ︸

≶0

The sign of this derivative is unknown. However, some patterns emerge:

• As very high or low π̃jt, the last term goes to zero, and there is little impact through
the changed probability of re-development.

• For values of π̃jt near the middle of the distribution, where cost shocks are more
marginal to the decision to develop, things are more complicated for this term.
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• Sending this term to zero, we see that benefits are not clear to producers. Subsidence
benefits them by lowering the cost of development (term 2), but it also lowers revenues
(term 3). As θ → 0, the costs channel wins.

In C3:

∂PSjt

∂θ
=
∂π̃jt

∂θ

(
η̃pjt(0)

η+1 exp(µ+ σ2/2)ϕ

(
µ+ σ2 + π̃

σ

)
− pjtHjtDϕ

(
µ+ π̃

σ

))
+

∂ log(pjt(0))

∂θ
(η + 1)PSjt

=
∂ log(pjt(0))

∂θ
(η + 1)PSjt ≤ 0

Information frictions unambiguously increase producer surplus by decreasing revenue.

G.5 Proof of validity of control function

The full structural supply model is:

djt = 1
(
Ṽ S
jt ≥ 0

)
Ṽ S
jt = log(η̃) + η log(pjt)− γ(1 + η)Sjt − log(Hjt−1)− log(D) + log(ξSjt)

log(pjt) = γSjt +ΠRel. altitude changejt + ujt

The proof follows Blundell and Matzkin (2014), in showing that the residual log(ujt)
satisfies control function separability, which follows naturally from the linearity of the first
stage:

r2(Ṽ S
jt , log(pjt), Zjt) = ujt = log(pjt)− γSjt − ΠRel. altitude changejt︸ ︷︷ ︸

q(log(pjt),Zjt)

Note that v(q(log(pjt),Rel. altitude changejt), r
1(log(pjt))) = q(log(pjt),Rel. altitude changejt),

so q is strictly increasing in pjt and v() is strictly increasing in q(). Thus, the structural
inverse of the system satisfied control function separability, and a control function can be
derived from the first stage to estimate the second stage.

G.6 Computing counterfactuals

Given our sparse data on prices, we seek to estimate counterfactual prices and housing
densities using a dataset of plots as a single cross-section. To do this, we consider a steady
state in which the joint distribution of the underlying random variables that generate the
equilibrium, (ξSjt, ε

i
jt, ejt, sjt) is time-invarying and approximately non-stochastic given the

large number of plots we consider (985,862). The intution of this steady state is that while
the draws of cost and preference shocks are stochastic, given enough plots the distribution
of (pjt(0), Hjt) is constant in each period and can be treated as fixed. In the steady state,
we drop the t subscript to emphasize the independence of time.
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The equilibrium is most easily expressed in terms of log prices and log relative housing
relative to the outside option. Let λ̃j = log(λj) − log(λ0); in equilibrium, λ̃j = log(Hj) −
log(H0). The equilibrium is characterized by:

λ̃D
j = − log(Rj(0)) + Zjδ + ej (28)

λ̃S
j = η log

(
η

1 + η

)
+ η log(pj(0)) + ξ̃Sj − log(HS

0t) (29)

λ̃D
j ≈ − log(pjt(0)) + Zjδ + ej + γθ

∞∑
τ=t

ρτ−tEt(sjτ ) (30)

The last equation is derived directly from Equation (16) evaluated at Sjt = 0.
Given data on the plot level on (λ̃j, log(pj(0)), Zj,

∑∞
τ=t ρ

τ−tEt(sjτ )) and estimates or
calibrated values of the parameters (γ, θ, δ, η, ρ), we first solve the previous equations exactly
to back out (ej, ξ̃j). From the inferred values of ξ̃j, we calibrate µ and σ as the mean and
standard deviation of these shocks.

In order to calculate welfare under different counterfactuals, for example setting Et(sjτ ) =
0 or θ = 1, we alter these parameters and, holding (Zj, ej, ξ̃

S
j ) fixed, solve the system for

alternative vectors of prices and relative housing supply that clear the housing market on
each plot.

G.7 Proof that the new error function is independent of prices

In order for the control function approach to provide unbiased estimation of the coefficient
on prices, prices and the (modified) error term must be independent. We prove that here:

E
(
ξ̃∗jt| log(pjt)

)
= E

(
E
(
ξ̃∗jt| log(pjt), Zjt

)
| log(pjt)

)
= E

(
E
(
ξ̃Sjt − E(ξ̃jt| log(ejt))| log(pjt), Zjt

)
| log(pjt)

)
= E

(
E
(
ξ̃Sjt| log(pjt), Zjt

)
− E

(
E(ξ̃Sjt| log(ejt))| log(pjt), Zjt

)
| log(pjt)

)
= E

(
E
(
ξ̃Sjt| log(pjt), Zjt

)
− E

(
E(ξ̃jt| log(ejt))| log(ejt), Zjt

)
| log(pjt)

)
= E

(
E
(
ξ̃Sjt| log(ejt), Zjt

)
− E

(
ξ̃jt| log(ejt)

)
| log(pjt)

)
= E

(
E
(
ξ̃Sjt| log(ejt)

)
− E

(
ξ̃jt| log(ejt)

)
| log(pjt)

)
= E (0| log(pjt)) = 0
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H Cost-benefit Appendix

Our empirical estimates provide a measure of the total cost of subsidence, which expressed
in terms of dollars per meter of average elevation loss is:

Total cost

meter of elevation loss
=

Total cost

NPV S
=

1

0.931
Total cost (31)

In order to price the externality-generating action, groundwater pumping, we must
convert this to dollars per unit of water pumped.

Subsidence is caused by low groundwater tables. We estimate the response of subsidence
rates to changes in aquifer storage by taking the average change in subsidence rates over
the 13-year period in our panel, and estimating the dosage-response of subsidence rates to
changes in aquifer storage:

∆s =
∆s

∆V
×∆V (32)

∆s =
0.0361

−111× 13︸ ︷︷ ︸
Annual loss×T=

Total loss
over 13 years

∆V

Here ∆s is the change in the annual subsidence rate (change in m/ year), and ∆V is
the net loss in aquifer storage (millions of cubic meters, or hectometers hm3). We take the
annual net loss in aquifer storage from CONAGUA (2024); details from this report on aquifer
demand over this period are described in Table A18.55

Table A18: Aquifer demand

Annual volume (hm3)

Natural recharge 151.4
Recharge from drinking water leaks 361.4

Total recharge 512.8

Pumping for drinking water 448.5
Other pumping 175.3

Total extraction 623.8

Net volume change per year -111

Notes: Source: CONAGUA (2024).

Solving this formula for ∆V and assuming no change in recharge implies that aquifer
storage would need to increase by a total of 2,495 hm3 in order to fully abate average

55This expression extracts away from dynamics; how long it would take for a higher water table to translate
to slower sinking rates is difficult to answer but crucial question for policy. While it may take decades for
higher aquifer levels to translate to fully abated sinking, interventions that locally rise water tables such as
wastewater injection sites have seen rapid abatement of subsidence.
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subsidence rates of 6 cm/year, the equivalent of reducing total pumping by a third for the
next 26 years, according to:

∆V = (Recharge− (1− r)Pumping)× Y

2495 = (512.8− (1− r)623.8)× Y

where r is the percentage reduction in pumping, and Y is the number of years this reduction
is sustained for. Note that in terms of pumping, a permanent change in the pumping rate is
required to induce a net loss in storage.

H.1 Cost-benefit of other recharge policies

Here we discuss the costs and benefits of these policies, a challenging task given the lack of
detailed information on the cost structure of some of these interventions. We discuss how
we construct the costs and benefits of each of the explored policies, with emphasis on the
limitations of these estimates.

The net benefits of a policy that facilitates aquifer recharge is the gains from offsetting
subsidence minus the sum of its treatment, procurement and construction costs net what it
the current system costs:

∆C = ∆W −∆(Treatment + Operating + Construction)

Treatment costs are the costs of treating the water, which is a function of the source
water quality (aquifer, wastewater, surface water) and its intended use (drinking, injection).
Operating costs are the costs of bringing the water from its location (aquifer, surface source)
into the Mexico City water supply or running the program (in the case of fixing leaks).
Construction costs are the costs of building the proposed investment. ∆W is the change in
welfare, equal to the costs of subsidence offset by the volume of recharge permitted.

H.1.1 Wastewater injection

Table A19: Values and sources for wastewater injection costs

Cost type Explanation and source

Treatment costs Cost of treating water to be clean enough to enter the
aquifer without activating heavy metals or causing well
clogs.

Operating costs Annual costs of operation, treatment

Construction costs Building treatment and injection infrastructure.

We take costs of investing in wastewater injection and the potential capacity of an
injection site from López-Morales and Mesa-Jurado (2017), who characterize the costs of
treating wastewater and injecting in the Chichinautzin Sierra.
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H.1.2 Leaks control

Table A20: Leaks repair costs

Cost type Explanation

Treatment costs There is no change in treatment costs when fixing leaks
because the water supply mix is unaffected.

Operating costs Annual investment in leaks repair. There is no change
in the cost of procuring water because the water supply
mix is unaffected.

Construction costs Some minor investment in identifying leaks and setting
up the program

We take reports of the costs and efficiency of efforts to repair leaks in the system from
López-Morales and Mesa-Jurado (2017). Repairing leaks may have contradictory impacts
on the aquifer; CONAGUA (2024) estimate that most recharge on the aquifer comes from
lost water in the Mexico City system, and considering that some of that water is imported
from outside the watershed would imply that some of this recharge is additional to what is
pumped. We take an optimistic scenario and assume that all leaks that are addressed are
done on parts of the system prior to entering the city, which would make all water saved
additional. However, given that our cost estimates are calculated using efforts conducted
within the city, it is unclear whether we over- or under-estimate these relative to the true
costs of repairing leaks outside the city. While infrastructure outside the city is exposed
and therefore less costly to work on than buried lines, these lines are also larger and more
economically costly to shut down.

H.1.3 New water sources

Table A21: New water sources costs

Cost type Explanation

Treatment costs We assume no change in treatment costs. These are
potentially even net negative, as it may be cheaper to
treat surface water than groundwater which is heavily
contaminated with Arsenic.

Operating costs Conveyance and storage costs.

Construction costs Infrastructure investment to transport surface water to
the city.

We take reports of the costs and efficiency of efforts to generate new water sources from
López-Morales and Mesa-Jurado (2017). They consider five alternative sources of water:
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Temascaltepec, a surface water system that connects with the Cutzamala System; Tecolutla
(Veracruz); Amacuzac (Morelos); Taximay, a dam in the Estado de México; and Oriental-
Libres, a groundwater basin in the state of Puebla. Our final estimate for alternative water
sources averages across these. We use their operating costs and initial investment estimates,
but assume that construction takes 5 years and use our own discount rate to aggregate costs.

H.1.4 Wastewater recycling

Table A22: Wastewater recycling costs

Cost type Explanation

Treatment costs This is difficult to characterize; while grey water is very costly to
treat for reintroduction into the water supply, the high Arsenic
content of the groundwater currently being pumped is also costly
to treat.

Operating costs Conveyance and storage costs.

Construction
costs

Infrastructure investment to transport surface water to the city.

Our primary source for information the costs and benefits of investing in wastewater
recycling plants comes from the 2007-2012 Plan for Sustainable Water Management in
Mexico City (Gobierno del Distrito Federal, 2007). This document describes an investment
in building 6 macro-sites for secondary wastewater treatment. We assume a useful life of 50
years once built following engineering guidance. In the absence of information on operating
costs, which can be substantial for wastewater treatment, we use a value of $2.9 MXN per
liter treated which is taken from an engineering blog from Mexico (Ingenieŕıa, 2021).56 Note
that construction costs may have evolved substantially between 2007 and now, and better
estimates of operating costs are necessary for comprehensive analysis.

56We chose the midpoint of the range they specify since these are secondary treatment sites.
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